Basic Parameter Setup

Note1: $\mathrm{N}=$ Setup varies depending on the ac drive and motor capacity.

Quick operation parameters setup block diagram

\# Fast operation control mode

(O) There are several operation control methods applicable to the ac drive for thereof startup operator. You can use the following operation methods to simply and quickly start the ac drive.
(o) There are two primary operation control parameters to start the operation of ac drive: The first one is F4: Operation Control Source and the other one is F5: Frequency command source. Please see the table below for description of operation.

Parameter functions	Description of operating procedures	$\begin{array}{\|c} \hline \text { Ex-factory } \\ \text { setting } \end{array}$	Page No.
F4 : Operation control source			
0 : Digital operation panel		0	P5-3
	* Please pay attention to the forward \& backward rotating direction of motor when performing the test run.*		
1: Digital input terminal	Terminal Dil /ON \rightarrow FWD (Indicator ON) operation $\rightarrow \mathrm{OFF} /$ Stop.		$\begin{aligned} & \hline \text { P5-3 } \\ & \text { P5-19 } \end{aligned}$
F5 : Frequency command source			
0 : Digital operation panel	Frequency changing mode is accessible by pressing the \boldsymbol{A} key during the operating state.	1	P5-3
1: Operation panel AV input (V.R)	To perform the rpm control from the Variable Resistor (V.R) from the operation panel. (DC 5 V input)		P5-4
$2 \text { : AV1 input }$ $(\pm 10 \mathrm{~V})$	To perform the rpm control by inputting $0 \sim \pm 10 \mathrm{~V}$ to analogy AV1 terminal.		
3 : AV2 input (+10 V)	To perform the rpm control by inputting $0 \sim+10 \mathrm{~V}$ to analogy AV2 terminal.		
4: AI input (20 mA)	To perform the rpm control by inputting $4 \sim 20 \mathrm{~mA}$ to analogy AI terminal.		
5 : AV2+AI	With analogy AV2 and AI terminals, addition and subtraction operation can be provided for both analogy signals at the same time to perform rpm control.		
6 : Pulse Frequency Command	Additional mounting of PG-AB2 is required that relays the pulse signals to A1, B1 terminals for rpm control.		P5-5
7 : External PID	To execute the external analog signals for PID feedback control.		
$\begin{aligned} 8 & : \text { External PID } \\ & +\mathrm{AV} 2 \end{aligned}$	General control mode is to take the analog signal AV2 as the speed command source, and PID control mode will be automatically enabled when feedback value of PID analog signal reaches above the pressure command value.		

\# Five control modes for selection

LS800 provides five control modes - 2: Open-loop scalar control (V/F), 3: Close-loop scalar control (V/F + PG), 4: Sensor-less scalar control (V/F sensor-less vector control), 5: Close-loop vector control (Flux vector + PG), 6: Sensor-less vector control (Sensor-less flux vector control). The user can base on his own application requirements and use the digital operation panel to select the control mode.

- The AC drive has been set to V/F control mode at ex-factory; please set up the control modes and relevant parameters according to the following flow processes.

\# Torque current limit, torque current command

- Torque current limit is provided only for setting the operation of two control modes: F147 = 5: Close-loop vector control (flux vector + PG), 6: Sensor-less vector control (sensorless flux vector control); torque control function for other control modes is not available.
- Max. torque current $=$ Rated current of AC drive $\times($ F173) torque current command level $\times 2$.
- Torque current (rms) $=$ (Rated current of AC drive $\times(\mathrm{F} 173)$ torque current command level $\times 2$) / 1.414

\# Position tracking of pulse-wave command

- Additional mounting of PG feedback card (optional) is needed for performing the position tracking of pulse-wave command; please refer to P2-20 in this regard; and the pulse-wave frequency command shall be input from A1, B1.
- Note 1: The set value to F15 for the upper limit of frequency shall be higher than the upper limit of pulse-wave frequency command to be controlled by more than 15%.
- Note 2: When set F4 operation control source = 1: Digital input (Di1, Di2) terminal, it shall be enabled prior to the signal from the pulse-wave frequency command so as to protect the pulse-wave number command from loss.
- Note 3: The speed rate of acceleration/deceleration can be the speed rate of pulse-wave frequency command or the speed rate set to F35, F36.

Setup the following parameters prior to operation:

Ac drive parameters		
F121 : Max. output voltage (U.V.W)		
Motor nameplate		
F141: Rated voltage (V) F142 : Ra	42 : Rated current (A)	F143: Rated frequency (Hz)
F144: Rated speed (rpm) F145: HP (HP) F146: Number of poles (P)		
F148: Speed Feedback F149: Encoder (PG) pulse		F167 : Low-speed Sensor-less speed control P gain
	F168: Low	w-speed Sensor-less speed control I gain
F151: Encoder (PG) feedback speed /	/ F169 : High	h-speed Sensor-less speed control P gain
filtration time	F170 : High	h-speed Sensor-less speed control I gain
F152 : PG off-line detection time	F177 : Clos	se-loop vector control zero-speed
F153 : Pulse-wave number command		itioning (set F177 = 2)
F154: Pulse-wave command direction	F178: Zero	o-speed Positioning P gain
F155: Pulse-wave number multiplying factor	F179: Zero-speed Positioning I gain	
\downarrow		
To perform the detection \& measurement of electric parameters, F147 control mode shall be set to: 0 : Electric Parameter Detection Perform Auto tuning (Detection \& measurement of electric parameters) [Fxx.xx] display indicates a successful auto-tuning.		
\downarrow		
Set F147 control mode to 1: Mechanical Parameter Detection, and perform the detection \& measurement of mechanical parameters. [Fxx. Xx] display indicates a successful detection \& measurement of mechanical parameters.		
\downarrow		
Set F147 control mode to 5: Close-loop vector control		
\downarrow	\downarrow	
F15 Upper-limit frequency setup $\begin{gathered}\text { Note } 1\end{gathered}$	※Note 1	Select F4 Operation control source ※ Note 2
\downarrow		
Setting the acceleration \& deceleration time (F35, F36) ※ Note 3		\downarrow
	Set	Set F5 Frequency command source to 6 : Pulse frequency command
\downarrow		\downarrow
F92 Stall protection setup $=0$ (Disabled $)$	isabled)	Perform the test run

IV -Test Run-

V Description of Parameter Functions

Operator Display Setting....5-1Operation ControlParameters...........................5-3
Speed limit. 5-7- Multi-stage speed CommandSetup5-9
Acceleration/Decelerationtime.5-10

- Analog Input 5-12
- Digital (Di) Input 5-18
Digital (Do) Output 5-22
- Jumping Frequency 5-25
- Motor Protection Setup 5-25
Automatic OperationFunction5-29
- Magnetic Flux Setup 5-31
- FM1 AO waveform output
(No. 2.31 Special-Purpose)....5-34 -34- FM2 AO waveform output
(No. 2.31 Special-Purpose)....5-35
- AC Drive Parameter (No. 2.32
Special Purpose) 5-36
FM1 AO analogy output (No. 2.32 Special-Purpose). 5-36
- FM2 AO analogy output
(No. 2.32 Special-Purpose) 5-37
Motor nameplate 5-37
- Control Mode 5-38
\checkmark Encoder Setup. 5-40
- Motor Electric Parameters.. 5-43
- Flux Estimation Tester. 5-44
- Speed PI Controller (ASR) 5-45
- Zero-speed positioning 5-48
- Abnormality Records 5-49
- External PID 5-51
- Special parameter setup 5-55
- Communication Setup 5-56
- MODBUS Communication..... 5-58
- Storage, Recalling Parameters 5-65
-Description of parameter functions-

Operator Display Setting

R	Parameter	Description	Range	Unit	Ex-factory Setting
O	F0	Operator display selections	$0 \sim 40$		1

* Seven digits display and LED indicators on the operator panel may be applied to monitor a total of 37 operation status or settings of the AC drive.

Setting	Function	Description of Function	Related Parameter
0	Frequency Command (F)	Display the speed command setting	F5
1	Ouput frequency (H)	Display the output motor speed value.	-
2	Output Current (A)	Display the drive motor load current from output of AC drive (U.V.W)	-
3	Output Voltage (E)	Display the output (U.V.W) voltage (rms) of the ac drive.	
4	PG Feedback Speed rpm (n)	Display the actual speed of the motor feedback to Encoder.	F148, F149
5	Pulse Frequency Command	Displayed pulse frequency command \times F155 multiplying power.	F153, F155
6	Vector Estimated RPM	Display the calculated sensorless vector control output speed.	$\mathrm{F} 147=6$
7	Output Power Supply Frequency	Display the compensated output frequency of the closed loop scalar or vector control	$\mathrm{F} 147=3,4,5,6$
8	Unitless	Display the linear speed, feeding speed of the process (with maximum display value at 3276.7).	F3
9	Slipping Frequency	Display the slip Frequency due to load when the motor is on load.	$\mathrm{F} 147=3,4,5,6$
10	$\mathrm{Vdc}(\mathrm{V})$	Display DC voltage on the DC bus capacitor	-
11	Excitation Voltage	Display the excitation voltage in vector control mode.	
12	Torque Voltage	Display the torque voltage in vector control mode	
13	Excitation Current Command	Display the command value of excitation current in vector control mode	
14	Torque Current Command	Display the command value of torque current in vector control mode	
15	Excitation Current	Display the actual excitation current	
16	Torque Current	Display the actual torque current	
17	Output Power	Display the total output apparent power $\mathrm{P}=\mathrm{IV}$	
18	True Power (rms)	Display the total true power $\mathrm{P}=\mathrm{VI} \cos \theta$	
19	Virtual Power \%	Display the total reactive power $\mathrm{P}=\mathrm{VI} \sin \theta$	

Description of power display:

Example: Motor with the following specifications:

Number of Poles	HP	Voltage (rms)	Current (rms)	Frequency	Speed (rpm)
4	5 Hp	$220 / 380(\mathrm{~V})$	$14 / 8.1(\mathrm{~A})$	60 Hz	1700

Input the rated apparent power : $S_{N}=\sqrt{3} \times 220 \times 14=\sqrt{3} \times 380 \times 8.1=5334.7$
Rated output shaft power : $P_{\text {out }, N}=5 \times 746=3730 \mathrm{~W}=T_{N} \times \omega_{N}$
Rated speed: $\omega_{N}=1700 \times(2 \cdot \pi / 60)=178.023(\mathrm{rad} / \mathrm{s})$
Rated torque: $T_{N}=P_{\text {out }} / \omega_{N}=20.95(N-m)$

Input true power $=($ Stator wire loss + core loss + rotor wire loss + bearing rotation loss $)+$ rotating shaft's output mechanical power $P_{\text {in }}=\sqrt{3} \times V_{L L} \times I_{\Phi} \times \cos \theta_{V I}=P_{\text {out }}+P_{\text {loss }}$
Input virtual power $\quad Q_{i n}=\sqrt{3} \times V_{L L} \times I_{\Phi} \times \sin \theta_{V I}$
Input apparent power $S_{i n}=\sqrt{3} \times V_{L L} \times I_{\Phi}=\sqrt{P_{i n}^{2}+Q_{i n}^{2}}$
Where, $V_{L L}$ is the rms of line voltage; I_{Φ} is the rms of phase-current or line-current; $\theta_{V I}$ is the power factor angle. If the motor at present has $V_{L L}=120$ volt $, I_{\Phi}=10 \mathrm{~A}, \theta_{V I}=60^{\circ}$, then

$$
\begin{aligned}
& P_{\text {in }}=\sqrt{3} \times 120 \times 10 \times \cos 60^{\circ}=1039.2 \\
& Q_{i n}=\sqrt{3} \times 120 \times 10 \times \sin 60^{\circ}=1800 \\
& S_{\text {in }}=\sqrt{3} \times 120 \times 10=\sqrt{1039.2^{2}+1800^{2}}=2078.5
\end{aligned}
$$

And the display of ac drive is to take S_{N} as 100.00%; therefore, the indicating values shall be as follows respectively:

$$
\begin{aligned}
& P_{i n}(\%)=\frac{1039.2}{5334.7} \times 100.00=19.48 \% \\
& Q_{i n}(\%)=\frac{1800}{5334.7} \times 100.00=33.74 \% \\
& S_{\text {in }}(\%)=\frac{2078.5}{5334.7} \times 100.00=38.96 \%
\end{aligned}
$$

Setting	Function	Description of Function	Related Parameter
20	Temperature (${ }^{\circ} \mathrm{C}$)	Display the temperature of internal heat sink.	F100, 101
21	Count value	Built in a simple counter unit to display the count number.	F84, F85
22	Digital input status	Able to monitor and access a real-time ON/OFF status display from digital input terminals and digital output terminals (Please see P3-5 for status monitoring).	F68~F74
23	Digital output status		F75~F79
24	Digital operation panel AV (\%)	- Able to display the percentage of analog input voltage \%. - Able to monitor the noise voltage generated from the wiring and use this voltage to set up the bias voltage to avoid unnecessary noise interference.	F5 = 1
25	AV1(V)		F5 = 2
26	AV2(V)		F5 $=3$
27	AI(mA)		F5 = 4
28	Vdc_0	The initial DC voltage of DC bus on capacitor when POWER is ON.	-
29	 Multiple Stages Speed	Able to display the stroke by number of cycle and number of speed stage established by the auto-operation mode. - No. of cycle and speed stage is displayed in decimal system (0~9). - Display will be : (No. of cycle) $\times \times \times . \times \times$ (No. of speed stage)	F103 ~F120
30	K_Vdc	Reserved	
31	Phase U current (rms)	Display the drive motor load amperage of Phase U output of the AC drive.	
32	Phase V current (rms)	Display the drive motor load amperage of Phase V output of the AC drive.	
33	Phase W current (rms)	Display the drive motor load amperage of Phase W output of the AC drive.	
34	PID (\%)	Display the PID control output in \%.	F186
35	Reserved	Reserved	
36	Software version	To display the version number of software.	
37	Position-tracking error	Display the position and track the error value.	$\mathrm{F} 177=2$

-Description of parameter functionsduring operation (\bigcirc)

R	Parameter	Description	Range	Unit	Ex-factory Setting
\bigcirc	F1	LPF filtration time display	$0 \sim 15$		6

© Able to filter out the fluctuation of low-bit display value in order to read the numerical value of indicated status.
© Do not set up a long time constant, otherwise it will affect the response speed against the display of numerical value.

| \bigcirc | F2 | Speed display unit | $0 \sim 1$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |

(0) Frequency (Hz) or speed (rpm) can be displayed for the output operation speed of the ac drive to be set by this parameter while displaying any function selected for the status displayed by F0 operation panel.
$\square 0$ 0: Frequency (Hz)
$\square 1$: Speed(rpm)

\bigcirc	F3	Unitless display of fold of multiplication	$0.001 \sim 10.000$		1.000

() This function may be applied to set up a multiplying power to display linear speed, feeding speed or the output of the final mechanical real rpm after reduction ratio.
(o) Unit-less display value $=$ output $\mathrm{rpm} \times$ F3 multiplying power.
(Max multiplying display value $=3276.7$).

Operation control Parameter

\times	F4	Operation Control Source	$0 \sim 1$		0

Before operating the AC drive, operation control command must first be given. User may select the operation control input as Digital Operation Panel or Digital Input Terminal.
$\square 0$: Digital operation panel - AC driver to start, forward direction, reverse direction and stop operation of the ac drive are all controlled by the Digital operation panel.
\square 1: Digital Input Terminal - AC driver to start, forward direction or reverse direction, and stop operation of the ac drive are all controlled by the digital input terminals.

\bigcirc	F5	Frequency Command Source	$0 \sim 8$		1

※ This parameter relates to the Frequency command of the ac drive. The following nine options of Frequency commands are available for selection, depending on required configuration of the control system.
※ Once the inching command function setup becomes effective, it has the highest control priority is over the other nine speed commands and permits adaptation of any other type of speed command for alternative control.
\square 0: Digital operation panel (F17) - Control is set up by keypad [Increase] and [Decrease] from the Digital Operation panel, or by functions 12: Master Speed Increase, and 13: Master Speed Decrease Control of the multi-function programmable digital input terminals. (ref. page 5-20 ~ 5-21)

1: Operation panel AV Input (V.R) - Control by potentiometer (V.R) signals DC 0~5V from the operation panel.
2: AV1 Input ($\mathbf{\pm 1 0 V}$) - Control by analog voltage signal DC $0 \sim \pm 10 \mathrm{~V}$ from analog input terminal AV1.
\square 3: AV2 Input (+10V) - Control by analog voltage signal DC $0 \sim+10 \mathrm{~V}$ from analog input terminal AV2.
\square 4: AI Input (20mA) - Control by analog current signal DC 0~20mA (or DC $0 \sim+10 \mathrm{~V}$ to be selected from SW1~5) from analog input terminal AI.
$\square \mathbf{5 : A V 2 + A I}$ - Control by addition of two input values of the analog voltage and analog current (or voltage) signals from both analog input terminals AV2 and AI; or addition and subtraction control being done by an ideal negative bias set up by the parameter while performing synchronous linking analog compensation control for multiple units.
For example: (1) Parameter F15 $=\mathbf{6 0 H z}($ Upper Limit Frequency), AV2 of F58 $=$ 10V(Gain Ratio 100\%), $\mathrm{F} 57=0 \mathrm{~V}$ (bias Ratio 0\%). (see Fig. 1 for the curve of Hz vs.V).
※ For example: (2) AI of F63 = 10V (Gain Ratio 50\%), F62 = 0V (bias Ratio -50\%), (See Fig. 2 for the curve of Hz vs. mA (or V).

Fig 1

Note 1: Figs. 1 and 2 are schematic view showing the executed addition and subtraction calculation signals.
※ For example 3: AV2 of INV2 is the master speed input to exercise addition/ subtraction operation on AI signals with AI as compensating input. The sum of both values is not be greater than the upper limit of $\mathbf{F} 15$ frequency and if the difference between both is less than 0 Hz , the ac drive stops. Refer to the setup method illustrated in Figs 1 and 2 for the setting of the parameter.

Fig 3

6: Pulse frequency Command - Relates to the control interface for the speed command of the pulse signal type. An additional encoder speed feedback card must be installed to provide follow-up operation control with the master ac drive (synchronous operation control by ratio).

※ Note : The set value of F15: Upper Limit Frequency must be higher than the upper limit of needed pulse frequency command by more than 15%. (Refer to encoder setup parameter group F148~F155 for related application.)

$\square 7$: External PID - To perform external analog signals for PID feedback control. [Select parameter setup PID set point value and PID feedback value for its input control terminals, and PID parameter group F186~F200]
\square 8: AV2 + External PID - General control mode is to take the analog signal AV2 as the speed command source, and PID control mode will be automatically enabled when feedback value of PID analog signal reaches above the pressure command value. (Conditions of control mode are described below)
(1) Unless otherwise the pressure mode at minimum pressure is enabled at PID command value $<$ Parameter F201, and AV2 $<0.5 \%$, it is under general control mode.
(2) Under the general control mode :
(A) If PID command value $<$ Parameter F201, and AV2 $\geqq 0.5 \%$, then it is in general control mode.
(B) When PID command value \geqq Parameter F201 :
(a) Under general control mode :

If PID feedback value < PID command value, then it stays at general control mode.
If PID feedback value \geqq PID command value, then it enters into PID control mode.
(b) Under PID control mode :

If PID command value \geqq Parameter F201, then it stays at PID control mode.
If PID command value $<$ Parameter F201, then it ends the PID control mode.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F6	Activation Mode	$0 \sim 2$		0

0: Started by Activation Frequency - The AC drive input frequency of the ac drive. (Refer to F16).
\square 1: Flying Re-start activation - The motor frequency is first detected from the running motor by the AC drive, and the detected frequency point is entered for the speed operation (Catch the flying motor speed). so as to reduce the severe impact from the regenerated current of the motor upon starting.
2: DC brake before Starting by Activation Frequency - The AC drive upon receiving the start command signal, will first perform the DC brake to make sure that the motor is stopped properly before start-up by activation frequency. Refer to F8 and F9 for the parameter setup of the DC brake before activation.

Caution : To use the function of flying re-start, select 3: Closed Loop V/F vector Control in F147 control mode. To do this, a PG device for Phases A and B signals must be made available to precisely detect the running frequency and revolving direction, this operation is preferred for a load with greater inertia. When selected open loop V/F vector control and sensorless V/F vector control, the error of the estimated idling frequency is greater when the electric signals transmitted by the idling motor are used to estimate the idling frequency and direction; meanwhile, impacts from regenerated current inputted to operation is greater, thus is more preferred for the load with smaller inertia.

Use of this function of flying re-start is not allowed for Closed Loop
Flux Vector Control and Sensorless Flux Vector Control in F147 control mode.
INHIBIT

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F7	Stop Mode	$0 \sim 2$		1

(O) To select the stop mode of the ac drive as required by the machine after the input of the proper stop signal.
$\square 0$: Coast to Stop - With the stop signal, the ac drive immediately turns off its drive signal for the power circuit between the ac drive and the motor to become OFF. Accordingly, the motor coasts to stop due to the system friction. (Free-Run)
1: Dynamic Stop - The motor reduces its speed and stops according to the rate of the deceleration time.
\square 2: Dynamic + DC Brake - DC brake is enabled when the output frequency reduces according to the deceleration rate to stopping. This enables the motor to stop soonest. Refer to those related parameters of F10~F12.

\times	F8	Brake Time before Activation	$0.0 \sim 120.0$	Sec	5.0

(O) With this parameter set to activate the ac drive upon the expiry of the duration of the enabled DC brake. If the time is set at its minimum value, i.e., " 0 ", it is deemed as a cancellation of the function of brake before activation.

\times	F9	Current of brake before activation	$0.00 \sim 1.00$	Pu	0.20

This parameter is to set up the magnifying factor of output dc brake current prior to the operation of ac drive. A minimum set value of brake current " 0 " will leave the output of brake energy ineffective, and will be regarded as a control to trigger a time-delay for operation. The set value of F8 shall govern the length of time delay.

Note: The brake current 100% is to take the set value to the F142 motor-rated current as the standard.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F10	Stop brake time	$0.0 \sim 120.0$	Sec	5.0
\times	F11	Stop brake current	$0.00 \sim 1.00$	Pu	0.20
\times	F12	(V/F) Stop Brake Beginning Frequency	$0.0 \sim 60.0$	Hz	0.0

() This parameter group sets the frequency to begin the DC brake, brake current and brake time when the motor stops, thus to provide load holding after the motor stops. Do not set Stop Brake Time and Stop Brake current at the minimum, i.e., "0" since there is no time or brake energy is available for operation.

- This parameter is to establish the function of frequency for initiating the dynamic dc brake to stop; the following setup shall be made first: F7 Stop mode $=2$: Dynamic + DC Brake, F10:Stop Brake time and F11: Stop Brake current.
- F12 function is F147 = 2 : Open Loop scalar Control(V/F), 3 : Close Loop scalar Control or 4 : Sensorless scalar control.

Speed Limit

\times	F13	Rotating Direction Control	$0 \sim 3$		1

(o) If for safety concerns for the operation of the machine that the motor can only be set for forward or reverse direction, apply this set of functions to select the restricted rotating direction for the motor.
$\square 0$: Either FWD or REV
\square 2: REV only

$\square 1$: FWD only
 \square 3: REV only with negative bias

(O) If 3: REV only with negative bias is selected, there are five types of analog input signal in the parameter F5: Frequency Command Source that provide the settings of the negative bias frequency. When the analog input signal setting works within the negative bias frequency region, the motor runs in reverse direction; in positive frequency region, in forward direction. [For details of analog signal bias setup, refer to each analog signal bias parameter group (F50, F52, F57, and F62)].
(o) Select 3: REV only with negative bias, $\mathrm{F} 5=5: \mathrm{AV} 2+\mathrm{AI}$ to control the operation of addition\& subtraction, and F5 $=7: \operatorname{PID}(\%)$ to perform the negative PID \% control.

The rotating direction set for the AC drive is not necessarily the same as that of the motor. The polarity of motor differs on the each make. Attention must be made to the danger caused by reverse motor rotation.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F14	Lower Limit Frequency	$0.0 \sim 400.0$	Hz	0.0
\times	F15	Upper Limit Frequency	$0.0 \sim 400.0$	Hz	60.0

Proper upper and lower frequency limit settings could help protect the mechanical system. Any wrong speed command given by the operator shall not cause damage to the system due to machine idling or operation in dangerously high speed.
※ Set value of Upper /Lower Limit Frequency must satisfy the condition: F15 \geqq F14.

\times	F16	Activation Frequency	$0.0 \sim 30.0$	Hz	0.0

() The function of lower limit frequency is disabled once it is smaller than the activation frequency.
© If the speed command setting is greater than that of F16 activation frequency the latter is inputted into operation up to the former. The system is in ready status if the speed command setting is smaller than that of the activation frequency.
(O) When the F14 lower limit frequency setting is greater than that of the F16 activation frequency and the speed command setting A is greater than F16 activation frequency setting (the speed command A as illustrated), the activation frequency value is inputted into operation until it reaches the lower frequency setting (Section "a" as illustrated). If the speed command setting is greater than the lower limit setting (i.e., the speed command B as illustrated), then the operation continues to reach the speed command setting (i.e., Section "b" as illustrated).
(O) When the speed command setting is higher than the upper limit frequency (i.e., the speed command C), the output frequency will be limited to operate at the upper limit frequency setting (i.e., Section "c" as illustrated).

Multi-Stage Speed Command Setup

$\underset{\text { Command }}{\text { Terminal }} \rightarrow$			Multi-stage Command 4	Multi-stage Command 3	Multi-stage Command 2	Multi-stage Command 1	Setup Range	Unit	$\begin{array}{\|c\|} \hline \text { Ex-factory } \\ \text { Setting } \\ \hline \end{array}$
\bigcirc	F17	Master Speed	OFF	OFF	OFF	OFF	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	5.0
\bigcirc	F18	Stage 1 speed	OFF	OFF	OFF	ON	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	5.0
\bigcirc	F19	Stage 2 speed	OFF	OFF	ON	OFF	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	10.0
\bigcirc	F20	Stage 3 speed	OFF	OFF	ON	ON	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	15.0
\bigcirc	F21	Stage 4 speed	OFF	ON	OFF	OFF	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	20.0
\bigcirc	F22	Stage 5 speed	OFF	ON	OFF	ON	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	30.0
\bigcirc	F23	Stage 6 speed	OFF	ON	ON	OFF	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	40.0
\bigcirc	F24	Stage 7 speed	OFF	ON	ON	ON	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	50.0
\bigcirc	F25	Stage 8 speed	ON	OFF	OFF	OFF	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	0.0
\bigcirc	F26	Stage 9 speed	ON	OFF	OFF	ON	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	0.0
\bigcirc	F27	Stage 10 speed	ON	OFF	ON	OFF	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	0.0
\bigcirc	F28	Stage 11 speed	ON	OFF	ON	ON	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	0.0
\bigcirc	F29	Stage 12 speed	ON	ON	OFF	OFF	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	0.0
\bigcirc	F30	Stage 13 speed	ON	ON	OFF	ON	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	0.0
\bigcirc	F31	Stage 14 speed	ON	ON	ON	OFF	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	0.0
\bigcirc	F32	Stage 15 speed	ON	ON	ON	ON	$0.0 \sim 400.0 \mathrm{~Hz}$	Hz	0.0

(O) ON and OFF indicate those commands of closed and open circuit given by external terminals.
(o) In the multi-stage operation mode, stage speed operation may be selected (up to 16 stage speeds) in the form of binary 4 bit and must be done through those multi-function input terminals (F69~F74). (please see the table above)
© Parameters F103~F120 may be selected for the programmable automatic operation to execute those sixteen stages of preset frequency. Control is done by multi-function input terminals 14: Automatic Operation and 15: Automatic Operation Control suspended, and the operation display status operation $\mathrm{F} 0=29$ allows display of cycle counts and the stage number of the speed executed. For related operation on time and rotation direction of the motor, refer to Parameters F105~F120.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\bigcirc	F33	Inching Speed	$0.0 \sim 400.0$	Hz	5.0

WARNING
※ ATTENTION - The inching operation has the top priority over any speed from the master through Stage 15 speed, it is impossible to select any other speed for operation whenever the inching operation is executed. The inching operation relates to a one and only command that is put on top priority to execute under any source of operation command.

Acceleration/Deceleration Time

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F34	Acceleration/deceleration time unit	$0 \sim 2$		1

0:0.01 Second - The acceleration/deceleration time of F35~F44 shall be $0.00 \sim 300.00$ seconds.(Ex-factory set value: 10.00 seconds)
\square 1:0.1 Second - The acceleration/deceleration time of F35~F44 shall be $0.0 \sim 3000.0$ seconds. (Ex-factory set value: 10.0 seconds)
\square 2: 1 Second - The acceleration/deceleration time of F35~F44 shall be 0~30000 seconds.(Ex-factory set value:100 seconds)

\bigcirc	F35	Acceleration time 0 (ref : Table1,2), Master Speed, Stage 4, Stage 8, Stage 12	$0.0 \sim 30000$	Sec	10.0
\bigcirc	F36	Deceleration time 0 (ref : Table 1,2), Master Speed, Stage 4, Stage 8, Stage 12	$0.0 \sim 30000$	Sec	10.0
\bigcirc	F37	Acceleration time 1 (ref : Table 1,2), Stage 1, Stage 5, Stage 9, Stage 13	$0.0 \sim 30000$	Sec	10.0
\bigcirc	F38	Deceleration time 1 (ref: Table 1,2), Stage 1, Stage 5, Stage 9, Stage 13	$0.0 \sim 30000$	Sec	10.0
\bigcirc	F39	Acceleration time 2 (ref : Table 1,2), Stage 2, Stage 6, Stage 10, Stage 14	$0.0 \sim 30000$	Sec	10.0
\bigcirc	F40	Deceleration time 2 (ref : Table 1,2), Stage 2, Stage 6, Stage 10, Stage 14	$0.0 \sim 30000$	Sec	10.0
\bigcirc	F41	Acceleration time 3 (ref : Table 1,2), Stage 3, Stage 7, Stage 11, Stage 15	$0.0 \sim 30000$	Sec	10.0
\bigcirc	F42	Deceleration time 3 (ref : Table 1,2), Stage 3, Stage 7, Stage 11, Stage 15	$0.0 \sim 30000$	Sec	10.0
\bigcirc	F43	Inching Acceleration Time	0.0~30000	Sec	5.0
\bigcirc	F44	Inching Deceleration Time	0.0~30000	Sec	5.0

(O) The time duration set for acceleration or deceleration determines the increasing or decreasing speed of output frequency, F143: rated frequency is the reference frequency for the acceleration or deceleration of time.
(o) There are four sets of independent acceleration/deceleration time settings available for the allotment of internal acceleration/deceleration time (as shown in the table given above) either by Parameter F45 or through those multi-function input terminals [F69 \sim F74 functions 10 : Acceleration/Deceleration Time 1 (ref : table 1, 2), and 11: Acceleration/ Deceleration Time 2 (ref : table 1, 2)].
(O) Inching acceleration/deceleration time settings are only available for the operation at inching speed.

CAUTION

Shorter acceleration/deceleration time may cause danger of transient overload current or overload voltage; improper adjustment will cause the ac drive to trip, damaged or burnt out.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F45	Multi-stage acceleration/ deceleration time allotment	$0 \sim 2$		0

() Four independent sets of acceleration/deceleration time are available to allow combined application through three types of internal and external allotment
\square 0: All Internal Allotment - Acceleration/deceleration time is assigned for the use by stages 16 preset of speed through the existing allotment mode already fixed. (Refer to F35~ F44 table or Table 1 given below.)
\square 1: Half Internal Allotment and another Half External Terminals - Master Speed, Stage 1 through Stage 3 speed, and Stage 8 through Stage 11 speed are respectively allotted internally based on the individual acceleration/deceleration time; and stage 4 speed through stage 7 speed,stage 12 speed through stage 15 speed are freely used and controlled through external multi-function input terminals to be set by binary 2 bit. (Refer to Table 1 or Table 2.)
\square 2: All External Terminals - Acceleration/deceleration time of 16 stages of speed are all controlled by multi-function input terminals to be edited by binary 2bit. (Refer to Table 2.)
(Table 1)

AccelerationMulti-stage Speed Deceleration Time	Master	Stage 1	Stage2	Stage3	Stage 4	Stage5	Stage6	Stage7
	Stage8	Stage9	Stage 10	Stage 11	Stage 12	Stage 13	Stage14	Stage 15
0 : Internal Allotment	0	1	2	3	0	1	2	3
1: Internal/External Allotment	0	1	2	3	External (Multi-function digital input) terminals			

(Table 2)

Acceleration / Deceleral Terminal	DIn	DIn
	2	1
Acceleration/Deceleration 0	OFF	OFF
Acceleration/Deceleration 1	OFF	ON
Acceleration/Deceleration 2	ON	OFF
Acceleration/Deceleration 3	ON	ON

\times	F46	S-curve time when starting the accelerate	$0.00 \sim 3.00$	Sec
\times	F47	S-curve time when finishing the accelerate	$0.00 \sim 3.00$	Sec
\times	F48	S-curve time when starting the deceleration	$0.00 \sim 3.00$	Sec
\times	F49	S-curve time when finishing the deceleration	$0.00 \sim 3.00$	Sec

(0) S-curve can be used to perform an impact-free operation by soft start and soft deceleration.
© After setting the S-curve time, the acceleration/ deceleration time will be extended as follows: Actual acceleration time $=$ Selected acceleration time $+(\mathrm{F} 46+\mathrm{F} 47) / 2$
Actual deceleration time $=$
Selected deceleration time $+($ F48 + F49 $) / 2$

Analog Input

R	Parameter	Description	Range	Unit	Ex-factory Setting
\bigcirc	F50	AV : 0V Input Bias \%	$-300.00 \sim 300.00$	$\%$	0.00
\bigcirc	F51	AV : 5V Input Gain \%	$-300.00 \sim 300.00$	$\%$	100.00

© Parameters F50 and F51 are used to define the knob (V.R)/AV analog signal command setting of the operator. The bias ratio corresponding to Parameter F50/0V may be set up a set of negative bias to avoid noise interference at 0 V , or for the application by other control; Parameter F51/5V is related to gain frequency and will be subject to F15 upper limit frequency at the optimal output. (Refer to those examples of seven basic curves given below.)

Fig 1

Fig 3

Fig 2

Fig 4

Refer to the Description Given Below According to the Chart Given Above
Fig. 1, 2, 3, 4

	Curve(1)	Curve(2)	Curve(3)	Curve(4)	Curve(5)	Curve(6)	Curve(7)
F5: Frequency Command Source	1: AV/5V						
F13 : Rotation Direction Control	$\begin{gathered} \text { 1: FWD } \\ \text { only } \end{gathered}$	$\begin{gathered} 1: \text { FWD } \\ \text { only } \end{gathered}$	3 : REV with negative bias	$\begin{gathered} 1: \text { FWD } \\ \text { only } \end{gathered}$	$\begin{gathered} 1: \text { FWD } \\ \text { only } \end{gathered}$	$\begin{gathered} 1: \text { FWD } \\ \text { only } \end{gathered}$	$\begin{gathered} 1: \text { FWD } \\ \text { only } \end{gathered}$
F15: Upper Limit Frequency	60HZ						
F16: Activation Frequency	0HZ	0HZ	3HZ	0HZ	0HZ	0HZ	0HZ
F50: Operator AV:0V Bias Ratio	0.00\%	100.00\%	-100.00\%	0.00\%	0.00\%	10.00\%	-10.00\%
F51: Operator AV:5V Gain Ratio	100.00\%	0.00\%	100.00\%	120.00\%	80.00\%	100.00\%	80.00\%

- Maximum AV Operator $\mathrm{F}=(\mathrm{F} 15)$ upper limit frequency \times (F51) Gain ratio
- Frequency-positive bias voltage $=($ F15) upper limit frequency $\times($ F50) bias Gain ratio

Example: Curve (6) $=60 \mathrm{~Hz} \times 10 \%=6 \mathrm{~Hz}$

- Negative bias voltage $=〔 5 \mathrm{~V}(\mathrm{AV}) \div($ F50 bias Gain ratio + F51 Gain ratio $) 〕 \times$ F50

Negative bias voltage
Example: Curve $77=[5 \mathrm{~V} \div(10 \%+100 \%)] \times 10 \%=0.45 \mathrm{~V}$ (Plus and minus symbols will not be enabled for operation)
\bullet Operator Voltage (V) Maximum Voltage \times Maximum Operator F upper limit frequency \times Gain ratio

Example : Curve (4) $=\frac{5 \mathrm{~V} \times 60 \mathrm{~Hz}}{60 \mathrm{~Hz} \times 120 \%}=4.16 \mathrm{~V}$, Example : Curve (5) $=\frac{5 \mathrm{~V} \times 48 \mathrm{~Hz}}{60 \mathrm{~Hz} \times 80 \%}=5 \mathrm{~V}$

- Gain ratio =

Maximum Voltage \times Maximum Operator F
 upper limit frequency \times Operator voltage

Example : Curve (4) $=\frac{5 \mathrm{~V} \times 60 \mathrm{~Hz}}{60 \mathrm{~Hz} \times 4.16 \mathrm{~V}}=120 \%$, Example : Curve (5) $=\frac{5 \mathrm{~V} \times 48 \mathrm{~Hz}}{60 \mathrm{~Hz} \times 5 \mathrm{~V}}=80 \%$

R	Parameter	Description	Range	Unit	Ex-factory Setting
\bigcirc	F52	AV1 : -10V Input bias \%	$-300.00 \sim 300.00$	$\%$	-100.00
\bigcirc	F53	AV1 : 10V Input Gain \%	$-300.00 \sim 300.00$	$\%$	100.00
\bigcirc	F54	AV1 : Dead Band Voltage (Dead Band)	$0.00 \sim 85.00$	$\%$	0.00
\bigcirc	F55	AV1 : Zero-point Output Gain	$0.00 \sim 50.00$	$\%$	0.00
\bigcirc	F56	AV1 : Maximal Output Limit	$10.00 \sim 100.00$	$\%$	100.00

- Parameters F52~F56 relate to the applied parameter group for analog input terminals AV1 $(0 \sim \pm 10 \mathrm{~V})$, and the Parameter F13 is set at $=3:$ REV with negative bias to be available for speed control and FWD/REV direction control.
- F54 set for dead band voltage allows effective prevention from noise interference when operating at 0 V since such interference may cause the ac drive from precise stop of its operation resulting in the operation of the motor to swing between FWD and REV.
- Parameters F55 and F56 relate to AV1 analog input signals to allow the zero-point output and maximum output settings through A/D converter controlled parameter module output.
- Dead Band voltage $= \pm 10 \mathrm{Vdc} *(\mathrm{~F} 54) 10 \% \div[(\mathrm{F} 53) \%-(\mathrm{F} 52) \%] \div 2$

Zero-point output frequency $=(\mathrm{F} 15)$ upper limit frequency $*(\mathrm{~F} 55) \%$

- Maximum output frequency $=($ F15 $)$ upper limit frequency $*(\mathrm{~F} 56) \%$

Fig 1

Fig 2

Please refer to the following tables for the description of parameters corresponding to the parameters shown in Figure 1 and Figure 2.

	Curve (1) Fig.1	Curve (2) Fig.1	Curve (3) Fig.2
F5 Frequency Command Source	$2:$ AV1/10V	$2:$ AV1/ $\pm 10 \mathrm{~V}$	$2:$ AV1/ $\pm 10 \mathrm{~V}$
F13 Rotating Direction Limit	$3:$ REV with negative bias	$3:$ REV with negative bias	$3:$ REV with negative bias
F15 Upper Limit Frequency	60 Hz	60 Hz	60 Hz
F52 -10V: Negative Gain Ratio	-200%	-100%	-100%
F53 10V: Gain Ratio	200%	100%	100%
F54 Dead Band Voltage	10%	10%	10%
F55 Zero-point Output Gain	0.0%	0.0%	10%
F56 Maximal Output Limit	100%	100%	80%

-Description of parameter functions-

R	Parameter	Description	Range	Unit	Ex-factory Setting
\bigcirc	F57	AV2 : 0V Input Bias \%	$-300.00 \sim 300.00$	$\%$	0.00
\bigcirc	F58	AV2 : 10V Input Gain \%	$-300.00 \sim 300.00$	$\%$	100.00
\bigcirc	F59	AV2 : Dead Band Voltage (Dead Band)	$0.00 \sim 85.00$	$\%$	0.00
\bigcirc	F60	AV2 : Zero-point Output Gain	$0.00 \sim 50.00$	$\%$	0.00
\bigcirc	F61	AV2 : Maximal Output Limit	$10.00 \sim 100.00$	$\%$	100.00
\bigcirc	F62	AI : 4mA / 0V Input Bias \%	$-300.00 \sim 300.00$	$\%$	0.00
\bigcirc	F63	AI : 20mA / 10V Input Gain \%	$-300.00 \sim 300.00$	$\%$	100.00
\bigcirc	F64	AI : Dead Band Voltage (Dead Band)	$0.00 \sim 85.00$	$\%$	0.00

Voltage signals of Analog input terminals AV2 $(0 \sim 10 \mathrm{~V})$ and current (or voltage) signals of AI ($4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$) are two individual sets of analog signal parameter groups of the same operation.

- Inputs of analog signal made through parameters of Input Bias Ratio (F57, F62), Gain Raito (F58, F63), and Dead Band Voltage (F59, F64) are sufficient to cope with different control requirements for parameter setup; and may set up the zero-point output F60 and maximum output limit F61 through parameters under the control of A/D converter. (Refer to examples of 12 types of basic curves.)

F65	AI : Signal Input mode	$0 \sim 1$		0

$\underline{\mathbf{0}: \mathbf{4 ~ 2 0 m A}}-\mathrm{AI}$ input terminal, able to receive $4 \sim 20 \mathrm{~mA}$ analog signal and enable the function for F66 parameter to detect the signal interruption.
$\mathbf{1 : \mathbf { 0 } \sim \mathbf { 1 0 V }}-\mathrm{AI}$ input terminal, able to receive $0 \sim 10 \mathrm{~V}$ analog signal, but unable to enable the function for detection of signal interruption.

| \bigcirc | F66 | AI : Signal Interrupts detection | $0 \sim 3$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\square 0$: Not detected - Disabled the function for detecting the AI signal interruption.
\square 1: Slow down to zero Hz after stopping - When interrupted the AI signal, frequency (Hz) will be reduced Progressively to 0 Hz , a display of Err 22 will appear.
\square 2: Free run stopping - When interrupted the AI signal, the frequency inverter will disconnect the output signal immediately to enable an opencircuit state between the frequency inverter and the motor; and then the motor will follow to come to stop after free run, a display of Err 22 will appear.

3: Maintain the frequency of operation before break - The frequency inverter will still stay at running state after the signal interruption for external AI detection.

R : Parameter is changeable during operation (\bigcirc)

Fig 2
※ Refer to the Description Given Below According to the Chart Given Above Fig. 1

		Curve (1)	Curve (2)	Curve (3)	Curve (4)	Curve (5)
F5	Frequency Command Source	$3: A V 2 / 10 V$	$3: A V 2 / 10 \mathrm{~V}$			
F15	Upper Limit Frequency	60 Hz				
F57, F62 0V(0mA) Bias Ratio	0.0%	0.0%	0.0%	100%	100%	
F58, F63 10V(20mA) Gain Ratio	200%	100%	100%	0.0%	10%	
F59, F64 Dead Band Voltage	0.0%	0.0%	0.0%	0.0%	0.0%	
F60 \quad Zero-point Output Gain	0.0%	0.0%	0.0%	0.0%	0.0%	
F61	Maximum Output Limit	100%	100%	100%	100%	100%

Refer to the Description Given Below According to the Chart Given Above

 Fig. 2:| | | Curve (6) | Curve (7) | Curve (8) | Curve (9) |
| :--- | :--- | :---: | :---: | :---: | :---: |
| F5 | Frequency Command Source | $3: A V 2 / 10 \mathrm{~V}$ | $3: A V 2 / 10 \mathrm{~V}$ | $3: \mathrm{AV} 2 / 10 \mathrm{~V}$ | $3: \mathrm{AV} 2 / 10 \mathrm{~V}$ |
| F15 | Upper Limit Frequency | 60 Hz | 60 Hz | 60 Hz | 60 Hz |
| F57, F62 0V(0mA) Bias Ratio | 0.0% | 0.0% | 100% | 100% | |
| F58, F63 10V(20mA) Gain Ratio | 100% | 100% | -10% | 0.0% | |
| F59, F64 Dead Band Voltage | 10% | 0.0% | 0.0% | 0.0% | |
| F60 | Zero-point Output Gain | 10% | 10% | 0.0% | 0.0% |
| F61 \quad Maximum Output Limit | 100% | 80% | 100% | 100% | |

Refer to the Description Given Below According to the Chart Given Above :

| | Curve (10) | Curve (11) | Curve (12) |
| :--- | :--- | :---: | :---: | :---: |
| F5 \quad Speed Command Source | $3:$ AV2/10V | $3:$ AV2/10V | $3:$ AV2/10V |
| F13 \quad Rotating Direction Limit | $3:$ REV with
 negative bias | $3:$ REV with
 negative bias | $3:$ REV with
 negative bias |
| F15 \quad Upper Limit Frequency | 60 Hz | 60 Hz | 60 Hz |
| F57, F62 0V(0mA) Bias Ratio | -200.0% | -100.0% | -100.0% |
| F58, F63 10V(20mA) Gain Ratio | 200.0% | 100.0% | 100.0% |
| F59, F64 Dead Band Voltage | 10.0% | 10.0% | 10.0% |
| F60 \quad Zero-point Output Gain | 0.0% | 0.0% | 0.0% |
| F61 \quad Maximum Output Limit | 100.0% | 100.0% | 100.0% |

Digital (Di) Input

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F67	Digital Terminal Scan Cycle	$1 \sim 5000$	0.2 ms	10

(o) This function filters the multi-function input terminals to prevent CUP malfunction due to noise interference or switching ejection.
(O) The scan cycle of this function will affect the response time of the multi-function input terminal. The user is advised to make proper adjusting of the setting as applicable.
(O) Scan time $=$ setting value $\times 0.2 \mathrm{~ms}\left(1 \mathrm{~ms}=10^{-3} \mathrm{~s}\right)$.

\times	F68	Di1, Di2 Setup	$0 \sim 1$		0

(O) This function sets up only terminals Dil and Di2, and only corresponding to 2-way operation controls and adaptation to the multi-function 1: 3-way Operation(Di3) control. All other functions do not fall with the operation scope of Di1 and Di2.
\square 0:2-Way Control-Di1(FWD/STOP), Di2(REV/STOP).

$\mathrm{F} 4=1$			D
$\mathrm{F} 13=0$			Di2 ON : STOP, OFF : REV
$\mathrm{F} 68=0$			COM

1: 2-Way Control-Di1(RUN/STOP), Di2(FWD/REV).

F4 $=1$	RUN/STOP		
F13 $=0$	FWD/REV		
F68 $=1$		$\quad \square \quad$	Di1 ON : STOP, OFF : RUN
:---			
Di2 ON : FWD, OFF : REV			
COM			

© $\mathrm{F} 69=\underline{\mathbf{1}: 3-\text { Way Control Operation (Di3), (Any input terminals from Di3~Di8 may }}$ define this function in conjunction with Di1, Di2 terminals of F68.)

-Description of parameter functions-

R	Parameter	Designation		Description	Range	Ex-factory
Sett						

$\square 0$: Disabled - This function allows the function input terminal function to be in the states of being disabled, thus to prevent any malfunction for cause not identified.
\square 1:3-Way Control - (Refer to 3-way control wiring diagram). RUN terminal relates to internally latched contact-a terminal; STOP terminal, contact-b terminal to release RUN from its latched status. FWD and REV may be switched between each other as desired.
\square 2: External error input (NO) - An enabled (ON) a contact from an external error input will trip the ac drive to stop output.
\square 3: External error input (NC) - A disabled (OFF) b contact from an external error input will trip the ac drive to stop output.
\square 4: RESET - When the AC drive trips due to abnormality, RESET command is used to release the abnormality status.

Never operate the RESET command in a constantly closed(ON) status.
INHIBIT

5 : Multi-stage speed command 1	Multi-stage commands 1, 2, 3 and 4 may be in the format of binary 4-bit edited into 16 -stage speed for operation control. Refer to below Table.
\square 6: Multi-stage speed command 2	
\square 7:Multi-stage speed command 3	
\square 8: Multi-stage speed command 4	

Multi-stage command				
Terminal	Din Multi-Stage Command 4 $2^{3}=8$	Din Multi-Stage Command 3 $2^{2}=4$	Din Multi-Stage Command 2 $2^{1}=2$	Din Multi-Stage Command 1 $2^{0}=1$
M-Stage Speeds	OFF	OFF	OFF	OFF
Master Speed	OFF	OFF	OFF	ON
Stage 1 Speed	OFF	OFF	ON	OFF
Stage 2 Speed	OFF	OFF	ON	ON
Stage 3 Speed	OFF	ON	OFF	OFF
Stage 4 Speed	OFF	ON	OFF	ON
Stage 5 Speed				

Multi-stage command				
16-Stage Speeds	Din Multi-Stage Command 4 $2^{3}=8$	Din Multi-Stage Command 3 $2^{2}=4$	Din Multi-Stage Command 2 $2^{1}=2$	Din Multi-Stage Command 1 $2^{0}=1$
Stage 6 Speed	OFF	ON	ON	OFF
Stage 7 Speed	OFF	ON	ON	ON
Stage 8 Speed	ON	OFF	OFF	OFF
Stage 9 Speed	ON	OFF	OFF	ON
Stage 10 Speed	ON	OFF	ON	OFF
Stage 11 Speed	ON	OFF	ON	ON
Stage 12 Speed	ON	ON	OFF	OFF
Stage 13 Speed	ON	ON	OFF	ON
Stage 14 Speed	ON	ON	ON	OFF
Stage 15 Speed	ON	ON	ON	ON

9: Inching Operation - Once executed, the inching command has priority over any other speed command; therefore, it is impossible to select any other type of speed operation while the inching operation is being executed.

$\square \underline{\text { 10: Acceleration/Deceleration }}$	Acceleration/Deceleration time of AC drive can be Time Command 1
$\underline{\text { 11: Acceleration/Deceleration }}$ selected from this function and the input status of terminal, four types of acceleration / deceleration in total available for selection.	
$\underline{\text { Time Command 2 }}$	

© If different acceleration/deceleration gradient changes are required in the process of acceleration or deceleration for any frequency; the terminal function may be applied for required control. (Refer to Below Table).
(o) Alternatively in any process of acceleration or deceleration for a frequency at any stage of speed, the terminal function may be applied to exercise various changes of gradient within four sets.

Acceleration/ Digital Terminal	2 DIn	1 DIn
	2	1
Acceleration/Deceleration Time 0	OFF	OFF
Acceleration/Deceleration Time 1	OFF	ON
Acceleration/Deceleration Time 2	ON	OFF
Acceleration/Deceleration Time 3	ON	ON

※ Note 1 : Din represents the definition given to any digital terminal input Di3~Di8.
12: Master Speed Increase - The master-speed frequency increase signal is input from the multifunctional terminal; F35 set value will be taken to perform acceleration for master-speed increase for a F35 set value $\geqq 20$ seconds while 20 seconds will be taken to perform acceleration for master-speed increase for a F35 set value <20 seconds.
\square 13: Master Speed Decrease - The master-speed frequency decrease signal is input from the multifunctional terminal; F36 set value will be taken to perform deceleration for master-speed decrease for a F36 set value $\geqq 20$ seconds while 20 seconds will be taken to perform deceleration for master-speed increase for a F36 set value is <20 seconds.
(o) These two functions may be set by function terminal to provide external control over the frequency of the master speed. They permit two-way operation with the [increase (\mathbf{A}) and decrease $(\boldsymbol{\nabla})$] from the operator; however, the control priority for F5 Frequency Command source control must be set at 0 : Digital operation panel.

14: Automatic Operation - When automatic operation is effectively set, its priority is next higher to the inching command.
\square 15: Auto Operation Suspended - When the programmable automatic operation function is selected and the function terminal is activated, the ac drive starts to execute the sequential operation according to the preset 16 -stage speed frequency. The operation may be suspended by using the function of Suspension Terminal and resumed when the suspension is over. If the operation is resumed by turning off the Automatic Operation Terminal, the operation procedure starts to execute from the original point.
\square 16: Counter signal input - When enabled this functional terminal, the external trigger signal, such as the signal from a proximity switch or a photoelectric sensor; can be taken as an input signal to the counting terminal to enable the counting of the ac drive; the interval of trigger signal shall not be less than 2 ms while the set value to the F67 relevant parameters shall be noted.
$\square 17$: Counter Zero-in - When enabled this functional terminal, the signal from externally triggered signal, such as signal from the proximity switch and photoelectric detector, can be input the count terminal, and then the frequency inverter will follow to count and check the set values relevant to the Parameter F67. To zero the count value, use this Counter Zero-in terminal to proceed the zeroing.
\square 18: Free Run Stop - When the function terminal signal is inputted, the ac drive immediately turns off its output for the motor to coast to stop due to the system friction.
\square 19: Auto Save Energy Operation - When the function terminal signal is inputted, the ac drive starts to perform internal operation to control the operation at an optimal efficiency setting. (For details, refer to F124.)
20 : Second Unit PID - Start the internal 2nd PID Gain Ratio Mode.(F197~F200)
21: Di activates PID - PID control module is activated by the input from the multi-function terminal. (For details, refer to F186).
22: Di activates AV2 - When selected Di for activation, the frequency command source shall be AV2 mandatorily.
23: Di activates AI - When selected Di for activation, the frequency command source shall be AI mandatorily.
※ When this function is in use, other functions shall not be given to AV2 and AI for usage (Such as F5, F174, F187~F189).
※ Priority : Inching $>\underline{\text { Auto operation }}>\underline{\text { Di activates AV2 }}>\underline{\text { Di activates AI }}>\underline{\text { Multi-stage speed }}$ command $>$ F5 frequency command source.
\square 24: Zero servo - After inputting the functional signal, the ac drive will decrease the frequency to 0 Hz according to the deceleration time, or charge the current when received the command at stop so as to enable the motor rotor to rotate constantly without drifting.
※ When set F147 control mode to 2: Open Loop V/F vector Control, 3 : Closed Loop V/F vector Control and 4 : Sensorless V/F vector Control, the charging current controlled by zero-servo shall be established by F126 voltage-increase value.
※ When set F147 control mode to 5: Closed Loop Flux Vector Control, 6 : Sensorless Flux Vector Control, the setting to F171 low-speed magnetic-field magnification factor shall control the current charging from zero-servo.

Digital (Do) Ouput

$\left.$| R | Parameter | Designation | | Description | Range |
| :---: | :---: | :--- | :--- | :---: | :---: | | Ex-factory |
| :---: |
| Setting | \right\rvert\,

\square 0: Disabled - This function allows the output terminal function to be in the states of being disabled.
1: Output in Case of Abnormality (NO) - In case of any abnormality detected by the ac drive, the contact is in closed status.

2: Output in Case of Abnormality (NC) - If any abnormality is detected by the ac drive, or CPU is losing POWER, this contact turns into open status. The normal output is closed status.3: In Operation - When the ac drive enters into standby mode or is in operation, this contact is in closed status.
4: Frequency Attained 1-When the output frequency of the ac drive reaches Specified Frequency 1 (F81), this contact is in closed status.
\square 5: Frequency Attained 2- When the output frequency of the ac drive reaches Specified Frequency 2(F82), this contact is in closed status.6: Consistent Frequency - When the output frequency of the ac drive is consistent with the setting for the Master Speed through Stage 15 frequency, the range to judge the consistent frequency is set by ($\mathbf{F 8 0}$), and this contact within that range is in closed status. (Unsuitabe application On the Analog signal speed command).
7: Overload Alarm - When the ac drive detects output overload, this contact is in closed status. The OL value $=(\mathbf{F} 142)$ Rated current of the Motor $\times(\mathbf{F 9 6})$ overload current level time-counting.8: OL Timing Forecast - When the multiplication value of electronic thermal sensor built in the ac drive has reached 80% of the time of trip-off level, this contact is in closed status. The OL level is set with (F96) ; and the multiplication time, with (F97).

9: Counter Cycle is Up - When the ac drive is performing external count and F84 the numeric value of the counting is equal to the setting of, this contact is in closed status, and then clear the numeric value to restart counting.
10: Comparative count value reached - A count value equal to the F 85 set value when the ac drive is executing the external counting will enable a "ON (closed)" state to this contact.
11: Zero-Speed Detected - When the ac drive is in downtime or the frequency set is smaller than the setting of the minimum activation frequency, this Contact is in closed status.
12: Timer function output - When activating the ac drive for operation, the contacts at the multifunctional output terminal (Timer function output) will be closed in response to the F86 ON-Delay Time Counting; and this function must be associated with the F6 DC Brake Function while the DC Brake energy can be set according to the requirement.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F80	Frequency consistent width	$0.0 \sim 10.0$	Hz	1.0

($)$ When the output frequency falls between the frequency setup range of $\pm \mathrm{F} 80$ the output multi-function terminal remains at ON status.

\times	F81	Frequency Attained 1	$0.0 \sim 400.0$	Hz	60.0
\times	F82	Frequency Attained 2	$0.0 \sim 400.0$	Hz	60.0
\times	F83	Magnetic Stagnation Width Attained	$0.0 \sim 10.0$	Hz	1.0

(o) When the output frequency is higher than the setting of the Frequency Attained, the multifunction output terminal set will remain in $\underline{\mathrm{ON}}$ status; when the output frequency drops to the Magnetic Stagnation width below the Frequency Attained, the multi-function output terminal is in OFF status

\times	F84	Counting Cycle	$0 \sim 30000$	P	1000

This parameter is applied to set up the counting cycle of the built-in counter. Once the counting reaches the preset value of the counting cycle, any multi- function output terminal may be selected to trigger the terminal output (Fig.1).

R : Parameter is changeable during operation (\bigcirc)

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F85	Comparative Counting	$0 \sim 30000$	P	500

© This parameter is applied to set up the comparison value of the built-in counter. Once the counting reaches the preset value of the counting cycle, any multi- function output terminal may be selected to trigger the terminal output to enter into ON status, and then enter into OFF status until the F85 counting cycle setting is up(Fig. 1).

(Fig 1) *Note $1:$ Attention to description and setting of parameter F 67 is urged.

X	F86	ON-Delay Time Counting	$0.00 \sim 60.00$	Sec	0.00
\times	F87	OFF-Delay Time Counting	$0.00 \sim 60.00$	Sec	0.00

A suitable ON/OFF delay time (F86, F87) setup can eliminate the bounce noise from general detectors and switches, or can be applied to a field where other special requirement in mechanics is needed.

- When activating the ac drive for operation, the contacts at the multifunctional output terminal (Timer function output) will be closed in response to the F86 ON-Delay Time Counting; and this function must be associated with the F6 DC Brake Function while the DC Brake energy can be set according to the requirement.
- When stopping the ac drive, the contacts at the multifunctional output terminal (Timer function output) will be open-circuit in response to the F87 OFF-Delay Time Counting; and this function must be associated with the F7 DC Brake Function while the DC Brake energy can be set according to the requirement.

Jumping Frequency

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F88	Frequency Skip 1	$0.0 \sim 400.0$	Hz	0.0
\times	F89	Frequency Skip 2	$0.0 \sim 400.0$	Hz	0.0
\times	F90	Frequency Skip 3	$0.0 \sim 400.0$	Hz	0.0
\times	F91	Frequency Skip Width	$0.0 \sim 10.0$	Hz	0.0

- Functions of Frequency Skip and Frequency Skip Width are exclusively provided to avoid resonance to the mechanical system under certain frequency, where it is unavoidable to pass through during acceleration or deceleration, and operation under such frequency is strictly prohibited.
- If the frequency skip width is set at 0 Hz , all the frequency-skip points are void.
- Frequency skip conditions must satisfy $\mathrm{F} 88 \leqq \mathrm{~F} 89 \leqq \mathrm{~F} 90$, and the operation must be provided in sequence as set. Skip frequencies respectively at Points $1,2,3$ may be partially or entirely overlapped to increase the operation of bandwidth from different segments, and to serve as the frequency skip area for one point or two points.

Ex. $\mathrm{F} 88=20 \mathrm{~Hz}$
$\mathrm{F} 91=10 \mathrm{~Hz}$
Skip frequency is ranging $15 \mathrm{~Hz} \sim 25 \mathrm{~Hz}$

Motor Protection Setup

\times	F92	Stalling protection setup	$0 \sim 31$		3

bit 0 : Protection function F93 - To enable the function for stalling voltage protection during deceleration.
\square bit 1 : Protection function F94 - To enable the function for stalling current protection during acceleration.
\square bit 2: Protection function F96 - To enable the function electronic thermal relay.
\square bit 3 : Inhibit inertia at motor start - To convert the motor-regenerative energy into motor magnetic field for inhibiting the consumption a little bit.

R : Parameter is changeable during operation (\bigcirc)
bit 4 : Automatic Voltage Regulation(AVR) - To enable the function of Automatic Voltage Regulation (AVR).
© When the input power supply is higher than the maximum output voltage (U.V.W.) set to function (F121), this AVR function is able to regulate the voltage within the set value of F121 automatically; thus, the motor can have a stable torque output, and the motor is not easy to access a temperature rise to increase the torque sharply, either. However, when the input power supply is lower than the set value of F121, the output voltage will vary with the input voltage as well.

INHIBIT

AVR shall not be activated for compensation of variation when enabled 5: Close-loop vector control and 6: Sensor-less vector control in (F147) control mode.

※ Digital increment table

Set values	Bit 4 $2^{4}=16$	Bit 3 $2^{3}=8$	Bit 2 $2^{2}=4$	Bit 1 $2^{1}=2$	Bit 0 $2^{0}=1$	Set values	Bit 4 $2^{4}=16$	Bit 3 $2^{3}=8$	Bit 2 $2^{2}=4$	Bit 1 $2^{1}=2$	Bit 0 $2^{0}=1$
0	\times	\times	\times	\times	\times	16	\bigcirc	\times	\times	\times	\times
1	\times	\times	\times	\times	\bigcirc	17	\bigcirc	\times	\times	\times	\bigcirc
2	\times	\times	\times	\bigcirc	\times	18	\bigcirc	\times	\times	\bigcirc	\times
3	\times	\times	\times	\bigcirc	\bigcirc	19	\bigcirc	\times	\times	\bigcirc	\bigcirc
4	\times	\times	\bigcirc	\times	\times	20	\bigcirc	\times	\bigcirc	\times	\times
5	\times	\times	\bigcirc	\times	\bigcirc	21	\bigcirc	\times	\bigcirc	\times	\bigcirc
6	\times	\times	\bigcirc	\bigcirc	\times	22	\bigcirc	\times	\bigcirc	\bigcirc	\times
7	\times	\times	\bigcirc	\bigcirc	\bigcirc	23	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
8	\times	\bigcirc	\times	\times	\times	24	\bigcirc	\bigcirc	\times	\times	\times
9	\times	\bigcirc	\times	\times	\bigcirc	25	\bigcirc	\bigcirc	\times	\times	\bigcirc
10	\times	\bigcirc	\times	\bigcirc	\times	26	\bigcirc	\bigcirc	\times	\bigcirc	\times
11	\times	\bigcirc	\times	\bigcirc	\bigcirc	27	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc
12	\times	\bigcirc	\bigcirc	\times	\times	28	\bigcirc	\bigcirc	\bigcirc	\times	\times
13	\times	\bigcirc	\bigcirc	\times	\bigcirc	29	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
14	\times	\bigcirc	\bigcirc	\bigcirc	\times	30	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times
15	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	31	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

※ \bigcirc : protection function enabled, $\quad \times:$ protection function disabled, no protection function when set value is 0 .

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F93	Deceleration Stalling voltage Setup	$1.00 \sim 1.25$		1.20

(O) In performing deceleration, the ac drive will stop decelerating (output frequency suspended from decreasing) due to rising DC bus voltage when the motor regenerates energy into the ac drive due to the high motor load inertia; The ac drive will continue to perform deceleration only when the dc bus voltage falls below the setting.
Stalling voltage level $=($ F129 $)$ R.S.T Mains input voltage $\times 1.414 \times$ (F93) Stalling Voltage $\%$.

Example : Stalling voltage level $=$ $220 \mathrm{Vac} \times 1.414 \times 120 \%=\underline{373 \mathrm{Vdc}}$

Output frequency

\times	F94	Acceleration Stalling Current Setup	$0.50 \sim 2.50$	Pu	1.50

() In performing acceleration, the AC drive will stop the acceleration (Output frequency is suspended from increasing) when the output current increase from the AC drive is over the setting of the stalling current level due to fast acceleration or overload of motor; and the AC drive continues to accelerate only when the current falls below the setting.
Stalling current level $=($ F142 $)$ Motor Rated Current \times (F94) Stalling Current Gain.
[Example]: Stalling Current Level $=$ $4 \mathrm{~A} \times 150 \%=\underline{6.0 \mathrm{~A}}$

Function for stalling current protection during acceleration

The upper limit of stalling current should never be two-fold higher than the rating of the ac drive.
WARNING

\times	F95	Start Thermal relays the current setting of position	$0.80 \sim 1.30$	Pu	1.00
\times	F96	Current level of electronic thermal relay	$1.00 \sim 2.50$	Pu	1.50
\times	F97	Acting time of electronic thermal relay	$0.1 \sim 120.0$	Sec	60.0

$\int_{0}^{t}\left(I_{A}^{2}(t)-F_{95}^{2}\right) \cdot d t>\left(F_{96}^{2}-F_{95}^{2}\right) \cdot F_{97} \Rightarrow>$ Activate the thermal relay
Where, $I_{A}(t)$ is the output current.
Example: $F_{95}=1.00, F_{96}=1.50, F_{97}=60.0$ seconds; if $I_{A}(t)=1.2 p u$, then the thermal relay will be activated for 170.45 seconds; the computation is as follow :

$$
\begin{aligned}
& \int_{0}^{t}\left(1.20^{2}-1.00^{2}\right) \cdot d t \leq\left(1.5^{2}-1.00^{2}\right) \cdot 60.0 \\
& \Rightarrow 0.44 \times t \leq 75 \\
& \Rightarrow t \leq 170.45 \mathrm{sec}
\end{aligned}
$$

The acting duration of thermal relay varies with different output currents as shown in Figure 1. Increase of F95 (to enable the thermal relay to initiate the integral current level) can heighten the protection level of thermal relay; for example, an output current below 1.20 pu will not trigger the thermal relay at $\mathrm{F} 95=1.20$ as shown in the illustration.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F98	V/F Output current Limit	$0.20 \sim 1.45$		1.30

When set F147 = 2, or 3, or 4, and output current in excess of the set value, then the AC drive will be reduced thereof output voltage quickly to protect the AC drive from tripping at over-current; so the ideal setting is to have the F94 set value less than F98 set value by more than 20%.
※ Note: Output current limit level : Rated current of inverter $\times 2 \times$ F98 set value.

\times	F99	Leaking current, 3-phase current, and abnormal level setup	$0.001 \sim 0.500$	Pu	0.250

© This function is designed to protect the output side of inverter from bad wiring construction and defective motor insulation. When detected a current over the set value for abnormal level from the three phases at output side (U.V.W.) of inverter, it is an abnormal leaking current.

\times	F100	Over Temp. Protection Setup	$60.00 \sim 95.00$	${ }^{\circ} \mathrm{C}$	88.00

(O) This function is provided to detect the temperature protection level of the built- in heat sink. Once the setting is challenged, the ac drive trips to protect from overheating.

\times	F101	Fan Activating Temp. Setup	$40.00 \sim 60.00$	${ }^{\circ} \mathrm{C}$	45.00

© Upon Power ON, the fans automatically run for one minute and then revert to the control by the fans activation temperature setting.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F102	Brake Discharge Level	$1.12 \sim 1.40$		1.17

\bullet Discharge Brake Level $=$ F129(R.S.T Mains input voltage) $\times 1.414 \times$ F102(DC-bus Brake Level).

Example: F129 = 220V, F102 = 1.20
Discharge Brake Level $=\mathbf{2 2 0 V a c} \times 1.414 \times 1.20=373 V d c$ (discharge level.)

WARNING

The ac drive with a capacity less than 11 KW has been built-in an electrodischarge, braking circuit while the ac drive with horsepower else shall be additionally mounted a brake unit. (The capacity 15 kw to 75 kw can be option)

Automatic Operation function

| \times | F103 | Automatic Operation Mode | $0 \sim 4$ | | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |0 : Disabled - Automatic operation is disabled.

1:Shutdown after reciprocating operation - To perform reciprocal automatic operation from Master Speed through Stage 15 Speed.Reciprocal Fashion Performed - Master Speed \rightarrow Stage 1 Speed \ldots Stage 15 Speed \rightarrow Stage 14 Speed \ldots Master Speed \rightarrow Master Speed \ldots etc, and then the operation is continued in reverse order to complete a cycle of a total of 32 speeds. The number of cycle times is set by F104 and displayed with the stage speed monitor. The ac drive automatically stops once the setting of cycle times is up.

2: Shutdown after cyclic operation - To perform automatic operation clockwise from Master Speed through Stage 15 Speed.Cyclic Fashion Performed - The automatic operation is performed clockwise from Master Speed ... Stage 1 Speed ...Stage 15 Speed \rightarrow Master Speed \rightarrow Stage 15 Speed... etc. It is repeated clockwise with the number of cycles to be set by F104 and displayed on the stage speed monitor together with the number of cycles and stage speed. The ac speed automatically stops when the setting of cycle times is up.
\square 3: Master Speed after Reciprocation mode - This function is performed same as that described in the setting of 1: Reciprocal fashion with the exception that the master speed frequency operates upon the expiry of the number of cycles.
4: Master Speed after Cyclic mode - This function is performed same as that described in the setting of 2: Cyclic fashion with the exception that the master speed frequency operates upon the expiry of the number of cycles.

Once Automatic Operation setup is done, the execution is subjected to the programmed mode of the multi-function input terminals 14 : Automatic Operation and 15 : Automatic Operation Suspended. The automatic operation control is second in priority to the inching frequency command while the Operation Control and Frequency Command fails to execute operation control(settings 1~4 enable activation of automatic operation) (Refer Page 5-19~5-21).

R : Parameter is changeable during operation (\bigcirc)

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F104	Number of Cycles	$1 \sim 1000$	Cycle	1

(0) This function defines the number of operation cycles needed in automatic operation.

X	F105	Time of automatic operation mode at Master speed	-30000~30000	Sec	5
\times	F106	Time of automatic operation mode at stage 1	-30000~30000	Sec	0
\times	F107	Time of automatic operation mode at stage 2	-30000~30000	Sec	0
\times	F108	Time of automatic operation mode at stage 3	-30000~30000	Sec	0
\times	F109	Time of automatic operation mode at stage 4	-30000~30000	Sec	0
\times	F110	Time of automatic operation mode at stage 5	-30000~30000	Sec	0
\times	F111	Time of automatic operation mode at stage 6	-30000~30000	Sec	0
\times	F112	Time of automatic operation mode at stage 7	-30000~30000	Sec	0
\times	F113	Time of automatic operation mode at stage 8	-30000~30000	Sec	0
\times	F114	Time of automatic operation mode at stage 9	-30000~30000	Sec	0
\times	F115	Time of automatic operation mode at stage 10	-30000~30000	Sec	0
\times	F116	Time of automatic operation mode at stage 11	-30000~30000	Sec	0
\times	F117	Time of automatic operation mode at stage 12	-30000~30000	Sec	0
\times	F118	Time of automatic operation mode at stage 13	-30000~30000	Sec	0
\times	F119	Time of automatic operation mode at stage 14	-30000~30000	Sec	0
\times	F120	Time of automatic operation mode at stage 15	-30000~30000	Sec	0

(o) To set the operation time and direction by the stage speed enabled. The setting of negative value is for operation in reverse direction and operation time counts; and the setting of positive value is for forward direction and operation time counts. Refer to the setting given in F13 if FWD and REV operation control is required.
() Frequency of any stage of speed may be set at 0 Hz in the course of performing the stage speed in automatic operation to provide the function of stop by timer; and the frequency of any stage speed may be set to be disabled by setting the automatic operation time at 0 sec to skip to the frequency of the next stage speed. please see parameter setup F17~ F32.

The positive \& negative signs shown in F105~F120 denote the running direction.

Magnetic flux setup

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F121	Maximum Output Voltage (U.V.W)	$0.50 \sim 1.00$	Pu	1.00

() The range of the input voltage to the ac drive may be of AC $180 \mathrm{~V} \sim 240 \mathrm{~V}$ (or $380 \mathrm{~V} \sim 480 \mathrm{~V}$). The maximum output voltage may be set by this parameter function for the maximum rms voltage to compensate for the rated voltage of the motor.
Output voltage $=($ F141 $)$ Motor rated voltage $\times($ F121 $)$ Maximun output voltage
The setting for $\mathbf{F} 121$ maximum output voltage at 1.00 is optimum when (F147) control mode is selected at 2: Open Loop V/F vector Control, 3 : Closed Loop V/F vector Control, or 4 : Sensorless V/F vector Control.
※ ATTENTION! The maximum output voltage should not be greater than $\mathbf{9 5 \%}$ and the internal must be done with adjustment of magnetic filed control function if 5 : Closed Loop Flux Vector Control or 6 : Sensorless Flux Vector Control is selected from (F147) control mode. Any setting greater than $\mathbf{9 5 \%}$ will be made at the cost of magnetic field compensation efficiency, and even resulting in tripping. The optimum setting is $(\mathbf{9 0 \%} \% \mathbf{9 5 \%})$.

| \times | F122 | Maximum Voltage Frequency | $0.50 \sim 2.00$ | Pu | 1.00 |
| :---: | :--- | :--- | :--- | :--- | :--- |The setting of output voltage, frequency of ac drive has to be comply with motor's normal rated. [Max. voltage frequency (1.00) will be based on F143 : rated frequency].

Maximum Output voltage and frequency (V/F)

\times	F123	V/F Curve select	$-10 \sim 5$		0

(o) The relation between output voltage and output frequency is defined in terms of square decrease, linear or square increase changes as illustrated below.
© With the setting of 0 , it relates to a linear V/F curve applicable to the load of a constant torque.
© With the setting selected from the range of $-1 \sim-10$, it relates to square decrease V / F curve, applicable to blower and pump.
(o) With the setting selected from the range of $1 \sim 5$, it relates to square increase V / F curve.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F124	Energy-saving Control Mode	$0 \sim 2$		0

© Upon activating the function of save energy control and the operation is at full voltage during acceleration/deceleration; the optimum output power will be automatically controlled by the load power during the operation at constant speed while the output speed is under monitor without stalling.
0: Normal Mode - Motor operation controlled in normal mode without activating Energy-saving control.
1: Efficiency control mode - Energy-saving control command to be controlled by internal calculation.2: External Terminal Control - Energy-saving control command to be controlled by external terminal input signals.
※ Recommendation: In selecting the save energy control function from (F147) control mode, 5: Closed Loop Flux Vector Control and 3: Closed Loop V/F vector Control are preferred; followed by 4: Sensorless V/F vector Control and 6: Sensorless Flux Vector Control; while 2: Open Loop V/F vector Control fails to perform efficiency control.
※ ATTENTION! This function is not applicable to any system with sudden and frequent load changes, or load already approaching the full load (rated) operation during the operation.

\bigcirc	F125	Oscillation (Hunting) inhibit gain	$0.0 \sim 100.0$	$\%$	15.0

A current oscillation will be taking place when running the motor at a certain section of frequency; by then, adjusting the set value of parameter can effectively correct the situation. The current-oscillating area with a higher horsepower will appear at a lower frequency bandwidth; that means the set value can be increased duly. However, an excessive setting may be prone to generating a too-big excitation current; so please make the adjustment appropriately.

- This parameter is an exclusive function for V/F control mode. (The control mode of F147 $=2$, 3, or 4)
-Description of parameter functions-

R	Parameter	Description	Range	Unit	Ex-factory Setting
O	F 126	Voltage boosting value (V/F Torque Compensation Setting)	$0.000 \sim 0.100$	Pu	0.010

- This function provides the means for proper adjustment of the corresponding output voltage at 0 Hz so as to improve the torque performance of the motor as demonstrated in the lower speed area.

The voltage increased at $0 \mathrm{~Hz}=\mathrm{F} 141 \times \mathrm{F} 126$
Example : 220Vac $\times 0.020=4.4 \mathrm{Vac}$ (Boost)

- Excessive adjustment will cause high motor current resulting in overload, and further leading to the activation of functions (F94~F96) of output limiting current. Therefore, confirm the output current value displayed under $\mathrm{F} 0=2$ before making the adjustment for the optimum setting.
- Unless otherwise specified, 3 Hz is sufficient to activate the motor to run in the V / F control mode.

\times	F127	PWM Modulation Method	$1 \sim 2$		1

\square 1: 3-Phase SVPWM Modulation - Use of 3-phase modulation driven motor obtains the smoothest current output and comparatively quiet operation.
\square 2: 2-Phase SVPWM Modulation - 2-phase modulation technology allows the time reduction of the IGBT On/Off operation, thus reducing the switching loss.
() Excessively long wiring for the motor is prone to reflective voltage feedback (tidal effects) from the motor, and this acts as additional load to the ac drive (power loss). In such case, the use of 2-phase modulation driven motor and lower setting of F128 switching frequency would help to reduce the refective motor voltage, harmonics, and EMI problem.
※ ATTENTION! If the wiring length has to be made not less than 50 M , AC Drive grade motor with higher voltage rating capability of its insulation is strongly recommended since excessive long cables will create greater parasitic induction, and higher multiple voltage loops. These can easily damage the motor insulation and the ac drive.
※ RECOMMENDATION - An output reactor should be installed whenever the wiring on the output side of the ac drive is $\mathbf{2 5 M}$ or longer (refer to $\mathbf{P 2 - 7}$).

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F128	PWM Switching Frequency	$1000 \sim 16000$	Hz	5000

- This parameter sets up the carrier frequency in PWM output.
- The setting level of the carrier frequency will affect the EMI noise of the motor, switching loss of the IGBT and the heat dissipation due to switching loss as stated in the table given below:

Carrier F	Motor Noise	Switching Loss	Heat Dissipation	Torque	Harmonics
1 KHz	High	Low	Low	High	Low
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
16 KHZ	Low	High	High	Low	High

\times	F129	R.S.T Input Voltage (rms)	$150 \sim 500$	Vac	220

© This parameter defines the standard input power supply voltage to the ac drive. The voltage working level and the voltage of ac drive would determine all related voltage working levels and voltage protection levels according to this parameter.
(0) F129 set value shall satisfy: F129 $\leqq 1.5 \times$ F141

\times	F130	Vdc gain(read only)	$50 \sim 300$	Fold	140

- This parameter is to adjust the gain of DC-BUS voltage at both sides of capacitor; and the result from the gain will become one of the important parameters to the operation of [$\mathrm{F} 0=10$: Normal state voltage at dc side (Vdc)].

FM1 AO waveform output (No. 2.31 Special-Purpose)

\times	F131	FM1 Analog output mode	$0 \sim 1$		0

0: PWM Pulse Output - DC voltage by PWM pulse is output to the FM1 terminal with the maximum range of $\mathrm{DC} 0 \sim 10 \mathrm{~V} / 1 \mathrm{~mA}$.

1: Pulse-wave frequency output - To enable the multiplying factor (F132) to the output frequency as pulse wave frequency and out it to the FM1 terminal.

\bigcirc	F132	Multiple ratio of pulse frequency 1	$1 \sim 36$		1

() Pulse frequency $=$ output frequency \times multiplying factor of pulse (with the maximum output of the pulse frequency at 1.25 KHz).

\bigcirc	F133	FM1 Multifunctional output setup	$0 \sim 21$		1

© Outputting an analog DC voltage DC $0 \sim 10 \mathrm{~V} / 1 \mathrm{~mA}$ signal in a FM pulse manner can be taken to monitor the following 21 running status values of frequency inverter.(Similar to the function of F0 status display in Operator)

R : Parameter is changeable during operation (\bigcirc)

Setting	Function (100\% Implication)	Setting	Function (100\% Implication)
0	No output	11	Excitation Current Command
1	Motor Output Speed	12	Torque Current Command
2	PG Feedback Speed	13	Excitation Current
3	Pulse Frequency Command	14	Torque Current
4	Sensor-less Vector Output Speed	15	True Power
5	Power supply output Frequency	16	Reactive Power
6	Slip Frequency	17	PID\% Output
7	Output Voltage	18	Keypad operate signal AV(V.R)
8	Excitation Voltage	19	AV1
9	Torque Voltage	20	AV2
10	Output Current	21	AI

\bigcirc	F134	FM1 Analog output gain/10V	$0.50 \sim 8.00$	Pu	1.00

() This function is applied to adjust the multiplying factor of the analog output of full voltage

\times	F135	FM1 Analog polarity setup	$0 \sim 1$		0

© Polarity setup is essentially done with DC 5 V as the potential point at " 0 ". Accordingly, any voltage greater than DC 5 V relates to FWD speed signal; and smaller than DC 5 V relates to REV speed signal. This function is applicable only to the display of output frequency or speed; therefore, any other function given with the polarity setup is of no significance.
0 : Without Polarity

- With 0 V as the reference point, and with no capability to identify FWD and REV.
\square 1: With Polarity - With 5 V as the reference point, and with the capability to identify FWD and REV.

FM2 AO waveform output (No. 2.31 Special-Purpose)

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F136	FM2 Analog output mode	$0 \sim 1$		0
\bigcirc	F137	Multiple ratio of pulse frequency 2	$1 \sim 36$		1
\bigcirc	F138	FM2 Multifunctional output setup	$0 \sim 21$		10
\bigcirc	F139	FM2 Analog output gain/10V	$0.50 \sim 8.00$	Pu	1.00
\times	F140	FM2 Analog polarity setup	$0 \sim 1$		0

© Refer to FM1 parameter functions as FM2 parameter functions given in F136~F140 above are the same as that provided by FM1.

AC Drive Parameters (No. 2.32 Special-Purpose)

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F131	Longest outage duration allowable	$0 \sim 5000$	ms	20

- If the power outage time is less than the allowable set value of time, it will follow the cycle of sequence to flying restart inverter; otherwise, it will trip directly and display Err7 (DC voltage too low). During the low-voltage period, PWM output will be turned off and Lu warning will be displayed at the same time.
※ Current vector control mode is not suitable for the function to follow the cycle of sequence to flying restart machine after power restoration from power outage.

\bigcirc	F132	Terminal-actuating setup for failure reset and after power restoration	$0 \sim 1$		0

\square 0: Direct Start - When set 1: Digital input terminal control to F4 (Running Control source), and running control terminal (Dil or Di2) is at normal close (ON) position, the frequency inverter will be started its running directly after inputting the power supply, power restoration and failure reset.
\square 1: Return the Start Command Terminal (Di) - When set 1: Digital input terminal control to F4 (Running Control source), and running control terminal (Di1 or Di2) is at normal close (ON), the frequency inverter will be started its running provided that command terminal (Di1 or Di2) shall be restarted (OFF first \rightarrow and then ON) after inputting the power supply, power restoration and failure reset.

FM1 AO analogy output (No. 2.32 Special-Purpose)

\times	F133	FM1 Ouput Mode	$0 \sim 2$		0

$\square \mathbf{0 : 0 \sim 1 0 V}-$ FM1 output corresponding value: $0 \sim 10 \mathrm{~V}$
\square 1: $\mathbf{\pm 1 0 \mathrm { V }}-$ FM1 output corresponding value $: \pm 10 \mathrm{~V}$
\square 2: 4~20mA - FM1 output corresponding value: $4 \sim 20 \mathrm{~mA}$

\bigcirc	F134	FM1 Multifunctional output setup	$1 \sim 21$		1
\bigcirc	F135	0V/4mA Bias Gain	$0.0 \sim 700.0$	$\%$	0.0
\bigcirc	F136	$10 \mathrm{~V} / 20 \mathrm{~mA}$ Gain	$0.0 \sim 700.0$	$\%$	100

© Outputting an analog DC voltage signal in an analog manner can be taken to monitor the following 21 running status values.(Similar to the function of F0 status display in Operator)

R : Parameter is changeable during operation (\bigcirc)

Setting	Function (100\% Implication)	Setting	Function (100\% Implication)
0	No output	11	Excitation Current Command
1	Motor Output Speed	12	Torque Current Command
2	PG Feedback Speed	13	Excitation Current
3	Pulse Frequency Command	14	Torque Current
4	Sensor-less Vector Output Speed	15	True Power
5	Power supply output Frequency	16	Reactive Power
6	Slip Frequency	17	PID\% Output
7	Output Voltage	18	Keypad operate signal AV(V.R)
8	Excitation Voltage	19	AV1
9	Torque Voltage	20	AV2
10	Output Current	21	AI

FM2 AO analogy output (No. 2.32 Special-Purpose)

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F137	FM2 Output Mode	$0 \sim 2$		0

$\square \mathbf{0 : 0 \sim 1 0 V}-$ FM2 output corresponding value: $0 \sim 10 \mathrm{~V}$
$\square 1: \pm \mathbf{1 0 V}-$ FM2 output corresponding value $: \pm 10 \mathrm{~V}$
\square 2: 4~20mA - FM2 output corresponding value: $4 \sim 20 \mathrm{~mA}$

\bigcirc	F138	FM2 Multifunctional output setup	$1 \sim 21$		10
\bigcirc	F139	0V/4mA Bias Gain	$0.0 \sim 700.0$	$\%$	0.0
\bigcirc	F140	10V/20mA Gain	$0.0 \sim 700.0$	$\%$	100

© For the functions of FM2 parameter in the foregoing parameters F137~F140, please refer to the functions of FM1 parameter for the identical functions.

Motor nameplate

\times	F141	Rated Voltage (rms)	$150 \sim 500$	V	N $($ Note 1, 2)
\times	F142	Rated Current (rms)	$1.0 \sim 1000.0$	A	$\mathrm{N}($ Note 1)
\times	F143	Rated Frequency (Hz)	$10.0 \sim 150.0$	Hz	$\mathrm{N}($ Note 1)

- F141~F146 related to the parameter group are to set up the nameplate of the motor; setting must be defined according to those rated settings on the motor nameplate.
(Note $2:$ F141: motor's rated voltage must \geqq F129 $\div 1.5$)
- To use a high-capacity ac drive to actuate a small-capacity motor, F142 set value must satisfy: F142 > rated current of the ac drive $\div 9$.
The range of F142 from minimum to maximum is [Rated current of ac drive $\times(0.16 \sim 1.3)$].
- Rated voltage, rated current and rated frequency set as above for the type of the motor are related to parameter functions of the ac drive driven motor. ($\mathrm{N} 1: \mathrm{N}=$ ex-factory setting varies according to the respective ac drive used)
※ When applied to a vector control mode, it is a must to know the correct set value of motor parameters in order to obtain a better motor speed-response curve and torque-characteristic curve.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F144	Rated Speed	$0 \sim 9000$	rpm	N(Note 1$)$

(0) This parameter is related to the rated speed of the motor.
(o) In vector control, the ac drive uses this parameter setting as reference to calculate the compensation for the slip speed. The running speed will not drop due to excessively large load on the motor, as automatic speed regulation control is provided to maintain constant speed.

\times	F145	HP (Horse power)	$0.5 \sim 600.0$	HP	N(Note 1)

- This parameter is related to the output rated power of the motor, please set up it according to the horsepower (HP).
Example : $1.5 \mathrm{KW} / 0.75 \mathrm{KW}=2.0 \mathrm{HP}$

\times	F146	No. of poles	$2 \sim 32$	P	$N($ Note 1$)$

- Setting is defined with the number of poles of the motor
- With V/F control, synchronous speed of the motor is achieved to correctly display the speed.
With vector control, the ac drive uses the setting of this parameter as reference to perform the speed vector control calculation.
※ Note 1: Different setup for F141~ F146 shall be made according to the practically different motor capacities.

Control Mode

\times	F147	Control Mode Setup	$-1 \sim 6$		2

-1 : Static Electric Motor Parameter Auto-tuning - This function is to be used in some machinery equipment with heavy-load coupled that fail to be performed the dynamic parameter detection; however, it is necessary to correctly set up the F160 (Motor no-load current \%) so that the motor electric parameter groups (F156~F159) can be detected in full with accuracy less than 0: Electric Motor Parameter Auto-tuning.

0: Static with Dynamic electric Parameter Detection - The electric characteristics of the motor can be automatically calibrated through the auto-tuning of the static and dynamic parameters built in this parameter at F156~F160.

Dynamic parameter tuning: By taking the forward rotation command to perform the operation at $2 / 3$ speed $(40 \mathrm{~Hz})$ of motor's rated frequency $(60 \mathrm{~Hz})$ is able to carry out the detection of motor parameters at no-load or less than $\mathbf{5 0 \%}$ load.) ※ Note: Display Pr_RL (detection function)
\square 1: Mechanical Parameter Detection - The mechanical inertia constant of the motor can be automatically calibrated by automatically setting up the mechanical constant value through the auto-tuning function of dynamic parameters built in parameter F161.
\square
2: Open Loop scalar Control - The AC drive outputs SVPWM waveform to the motor.
\square
3: Closed Loop scalar Control - The encoder mounted on the motor performs speed feedback for slip compensation so that the speed of the motor follows the speed command closely in high precision speed control.
4 : Sensorless scalar Control - Relates to the voltage type sensorless controller, whereby the voltage command and feedback current signal are applied to estimate the stator magnetic flux and determines the slip for making the frequency compensation.
\square 5: Closed Loop Vector Control - Relates to a current type closed loop(attached with PG) vector controller, to provide similar servo drive control with high precision speed response and torque control.
\square 6: Sensorless Vector Control - Relates to a current type sensorless vector controller, whereby the current command and feedback current error are applied to provide torque current compensation, The torque characteristics in the lower speed area using this mode outperforms the voltage control type, and provided smaller speed slip.

The parameters F141~F146 of motor's nameplate to execute 0: Electric Motor Parameter Auto-tuning ($\mathrm{Pr}_{-} \mathrm{RL}$) must be firstly set if the control mode is set to 5: Closed Loop Flux Vector Control or 6: Sensorless Flux Vector Control; after its successfully execution, follow to set the 5: Closed Loop Flux Vector Control or 6: Sensorless Flux Vector Control accordingly. (Please see P4-2).

PROMPT : The application of 5: Closed Loop Flux Vector Control or 6: Sensorless Flux Vector Control Mode must fall with the high speed [approximately 110% of the motor rated speed] where speed precision is the essence. Set up the following Parameter groups upon completing the electric parameter calibration:

1. $\mathrm{F} 121=0.90 \sim 0.95$
2. $\mathrm{F} 128=1 \mathrm{~K} \sim \mathbf{8 K}$ [Carrier Frequency]

Encoder Setup

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F148	Speed Feedback	$0 \sim 1$		0

\square 0: No Feedback - Speed feedback disabled.
\square 1: Encoder (PG) - To perform speed feedback control to the master controller.

\times	F149	Encoder (PG) Pulse	$300 \sim 2500$	P/rev	1024

(o) Please set up a correct number of pulse wave in order to perform a precise speed control.

\times	F150	Encoder (PG) Direction	$-1 \sim 1$		1

\square-1: B leads A - The motor operates in REV direction.
$\square 0$: Single-phase pulse command - Single-phase feedback allows only one-direction operation.
\square 1: A leads B - The motor operates in FWD direction.

\bigcirc	F151	Encoder (PG) feedback speed $/$ filtration time	$0.0 \sim 100.0$	ms	2.0

- This function can be taken to filter out the noises generated from the pulse-waves of motor and Encoder.

\times	F152	PG OFF-line detection time	$0.00 \sim 10.00$	Second	3.00

- PG off-line detection time (F152) is able to detect if the wire connection of Encoder is broken or bad connection.
\checkmark When set the detection time to 0.00 , function for detecting the PG broken wire is disabled. This function is suitable for torque limit and torque control.

\times	F153	Pulse command	$300 \sim 2500$	P/rev	1024

(O) To set up the pulse number command needed per revolution of motor. (The maximum response input pulse frequency is 300 KHz).
$\operatorname{Fp}(\mathrm{Hz})=\frac{\text { Motor's revolving speed at the highest output }}{60} \times \mathrm{P}($ pulse number $)=\mathrm{P} / \mathrm{rev}$
© When a quick response is required, please set up the acceleration/deceleration time for operating the ac drive to the minimum value.

\times	F154	Pulse command direction setup	$-1 \sim 1$		1

$\square-\mathbf{- 1}: \mathbf{B}$ leads \mathbf{A} - The motor operates in REV direction.
\square 0:Single-phase Pulse Command - Pulse frequency command is for phase A while operating direction command is for phase B.
\square 1: A leads B - The motor operates in FWD direction.
(O) After the completion of confirming the start direction by A-leading, B-leading, then a smooth control of forward/reversed rotation direction command is achievable.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F155	Pulse Command multiplying factor	$0.010 \sim 10.000$	χ	1.000

© Preset multiplying factor and adaptation with Encoder (PG) allows precise linked operation by ratio.
※ F148~F153 Relates to the encoder setup group, an encoder speed feedback card interface board provided with two sets of control interface to perform high precision speed control must be installed.

PG-AB2 input mode setup

F150 Encoder (PG) input direction =1: A leads B

- Phase A, B pulse trains, Phase A leads Phase B by 90 degrees for forward rotation (Positive/negative edge trigger) (fourfold frequency multiplication)
A1, B1 are pulse trains input by frequency speed command

B and B1

F150 Encoder (PG) input direction = -1 : B leads A

- Phase A, B pulse trains, Phase B leads Phase A by 90 degrees for reversed rotation (Positive/negative edge trigger) (fourfold frequency multiplication)
- A1, B1 are pulse trains input by frequency speed command

F150 Encoder (PG) input direction = 0 : Single phase feedback/command

- Phase A is a pulse train
- A1 is a pulse train input by frequency speed command, phase B1 is for direction while symbol L is for reversed rotation and H for forward rotation.

FWD REV

A and A1

B1
H

L

Encoder (PG) - Relates to the master encoder to perform speed feedback. Encoder mounted to the motor is connected to the interface board of Encoder (PG) to perform speed feedback, and speed error compensation so as to achieve high precision speed control.

※ Pulse Frequency Command - By taking the feedback Encoder pulse to perform a synchronous magnification as the speed command source with master encoder (PG) further equipped is able to perform a synchronous \& serial operation or proportional linking movement for multiple units at a precise speed.

Application Example: Universal Digital Synchronizer System Operation in Series

Motor Electric Parameters

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F156	Stator Resistance	$500 \sim 32767$	Pu:Q17	10000
\times	F157	Rotor Resistance	$500 \sim 32767$	Pu:Q17	8000
\times	F158	Stator Inductance	$3250 \sim 32767$	Pu:Q12	9000
\times	F159	Mutual Inductance	$3250 \sim 32767$	Pu:Q12	8750
\times	F160	No-load current $(\%)$	$12.50 \sim 99.00$	0.01%	40.00

This parameter group can be automatically tuned to detect the electrical parameter of motor by F147 Control Mode 0: Electrical parameters auto-tuning \& detecting function.
If the auto-tuning fails, manually enter the Parameters F156, F157, F158, F159 and F160. Obtains the five parameters from the Motor manufacturer, respectively Rs: Stator Resistance, Rr: Rotor Resistance, Ls: Stator Inductance, and Lm: Mutual Inductance, No-load current.

EXAMPLE : Motor manufacturer provides the parameters :
$\mathrm{Rs}=0.3 \Omega \quad \mathrm{Rr}=0.303 \Omega \quad \mathrm{Ls}=\mathrm{Lr}=0.0477 \mathrm{H} \quad \mathrm{Lm}=0.0456 \mathrm{H}$
Motor Ratings: $220 \mathrm{~V}, 14 \mathrm{~A}, 60 \mathrm{~Hz}$, No-load current 4.2A
Computation is as follow :

$$
\begin{align*}
& V_{\text {base }}=220 \sqrt{2} / \sqrt{3}=179.63 \quad(\mathrm{volt}) \\
& I_{\text {base }}=14 \sqrt{2}=19.8 \quad(\mathrm{~A}) \\
& \omega_{\text {base }}=2 \pi 60=377(\mathrm{rad} / \mathrm{s}) \\
& R_{\text {base }}=V_{\text {base }} / I_{\text {base }}=9.07(\Omega) \\
& L_{\text {base }}=R_{\text {base }} / \omega_{\text {base }}=0.02406(\mathrm{H}) \\
& \bar{R}_{s}=\frac{R_{s}}{R_{\text {base }}} * 2^{\wedge} 17=0.0331 * 2^{\wedge} 17=4338 \ldots \ldots .(\mathrm{F} 156) \tag{F156}\\
& \bar{R}_{r}=\frac{R_{r}}{R_{\text {base }}} * 2^{\wedge} 17=0.0334 * 2^{\wedge} 17=4378 \ldots . .(\mathrm{F} 157) \\
& \bar{L}_{s}=\bar{L}_{r}=\frac{L_{s}}{L_{\text {base }}} * 2^{\wedge} 12=1.9825 * 2^{\wedge} 12=8120 \ldots \ldots .(\mathrm{F} 158) \\
& \bar{L}_{m}=\frac{L_{m}}{L_{\text {base }}} * 2^{\wedge} 12=1.8953 * 2^{\wedge} 12=7763 \ldots \ldots .(\mathrm{F} 159)
\end{align*}
$$

$$
\text { No-load current }(\%)=(\text { motor no-load current } / \text { motor rated current }) \times 100
$$

$$
\begin{equation*}
=(4.2 \mathrm{~A} / 14 \mathrm{~A}) \times 100=30(\%) . \tag{F160}
\end{equation*}
$$

Note: In the calculation, $\mathbf{2}^{\wedge} 12$ and $2^{\wedge} 17$ are constants in format Q and shall not be changed. ($\mathbf{2}^{\wedge} 12=4096,2^{\wedge} 17=131072$)

\times	F161	Mechanical Constant(Rotor Inertia)	$0 \sim 30000$	Q16	1500

© To determine the rotor inertia of the motor. (Motor rotor inertia calibration must be when F147 : 5 Closed Loop Flux Vector Control is used).

Vector Estimation

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F162	Magnetic Flux Estimator Bandwidth (LPF)	$1.0 \sim 20.0$	Hz	3.0

A smaller set value will lead to a higher low-speed torque, a smaller speed error that makes the speed easy to be unstable.

A higher set value will lead to a smaller low-speed torque, a bigger speed error that makes the speed stable.
※ Suitable for F147 = $\underline{\mathbf{6} \text { : Sensorless Flux Vector Control mode. }}$

\times	F163	Speed Estimator Bandwidth (LPF)	$1.0 \sim 20.0$	Hz	7.0

A small set value will make the speed response slow and smooth at steady state.
A big set value will make the speed response quick and unsmooth at steady state.
※ Suitable for F147 = $\mathbf{4}$: Sensorless V/F Scalar Control or 6 : Sensorless Flux Vector Control mode.

\bigcirc	F164	Slip Compensation Gain	$10 \sim 200$	$\%$	50

- If the load to motor increases, the motor reduces its speed resulting in greater motor speed difference. The function of slip compensation gain is to overcome the speed slip due to load change of the motor so as to maintain a constant speed.
※ Suitable for F147 = $\underline{\mathbf{4}: \text { Sensorless V/F Scalar Control } \text { or } \underline{6:} \text { Sensorless Flux Vector }}$ Control mode.
- The rated slip of motor can be computed from the following formula according to the numerical values in the motor nameplate:
Synchronous motor rotating speed $=60 \mathrm{~Hz}(4 \mathrm{P}) \times 30=1800 \mathrm{rpm}$
Motor rated rotating speed $=1730 \mathrm{rpm}$
Slip of rotating speed $=1800-1730=70 \mathrm{rpm}$
※ LS800 Series default rated slip frequency is 3 Hz
Slip Compensation $=$ F164 $\times 3 \mathrm{~Hz}$
Example: Slip Compensation $=88 \% \times 3 \mathrm{~Hz}=2.64 \mathrm{~Hz}$
※ F147 = 6: Sensorless flux vector control
Slip Compensation $=$ Motor electric parameters $($ F156 \sim F160 $) \times$ F164

Speed PI Controller (ASR)

※ PI control: PI control is a combination of proportional control (P) and integral control (I) that can make an offset to thereof controlled set point according to the error value and time-derived variation.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\bigcirc	F165	Scalar Speed Control P Gain	$2 \sim 100$	$\%$	20
\bigcirc	F166	Scalar Speed Control I Gain	$0.0 \sim 100.0$	$\%$	50.0

The scalar speed PI control is to provide operation compensation for (F147) Control Mode $=3$: Closed Loop V/F scalar Control operation.

\bigcirc	F167	Low-speed Sensorless Speed Control P Gain	$2 \sim 100$	$\%$	30
\bigcirc	F168	Low-speed Sensorless Speed Control I Gain	$0.0 \sim 100.0$	$\%$	30.0
\bigcirc	F169	High-speed Sensorless Speed Control P Gain	$2 \sim 100$	$\%$	20
\bigcirc	F170	High-speed Sensorless Speed Control I Gain	$0.0 \sim 100.0$	$\%$	20.0

- PI speed control: PI control is to make a response that control the speed according to the speed deviation and time-elapsed variation through the combination of (P) proportional control and (I) integral control.
- Suitable for the control mode of F147 = 5: Close-loop vector control and 6: Sensorless vector control.
Caution : The above-mentioned parameter modulation is the PI-modulating parameter for speed. It directly affects the dynamic response speed and control precision of system. Under general condition, the user has no need to alter the ex-factory values.

※ Please be cautious to the reaction from system simultaneously when modulating the parameters F167~ F170.

Prompt:

(1) When you are using a motor with a high-efficiency, high-torque or a lower base frequency, a smaller set value of P gain shall be set to F167 and F169; otherwise, a bigger set value shall be used instead.
(2) If system needs a shorter acceleration/deceleration time, please set the F92 stall protection function to 0 together with an additional mounting of brake unit, or consider upgrading the capacity of frequency inverter for one level higher.
(3) PI parameters for speed control are closely related to the loading inertia and acceleration/ deceleration time of motor system. The user can make adjustment based on the exfactory PI parameters to go with different requirements of load characteristic in order to satisfy all kinds of need for different situation.

Magnetic Filed Oriented Control Block Chart

Note 1: The formula to solve magnetic field current is resident in the software and prevents from any alternation.
Note 2 : The formula to solve speed PI is adjusted by F167 and F168.

PI Speed Control Parameters Mathematical Calculation Chart

Note 1: PI herein will be set by the client, F165~F170.
Notes 2, 3, and 4: All resident in the software that prevent from any alternation.

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F171	Low-speed torque compensation gain	$100.0 \sim 180.0$	$\%$	140.0
\times	F172	Torque compensation cut-off frequency	$0.00 \sim 0.60$	Pu	0.20

- The F171 \& F172 Torque compensation cut-off frequency sensor-less vector control mode function for $\mathrm{F} 147=\underline{5 \text { Closed Loop Flux Vector Control and } 6 \text { : Sensorless Flux Vector }}$ Control is suitable for the equipment that needs high torque at low speed.
- Torque compensation is to take the no-load current of motor as the fiducial point while compensation cut-off frequency is to take the rated frequency of motor as the fiducial point.
Note: No-load current is the detected value from the detection \& measurement of motor electric parameters.
Ex.: Motor no-load current $=3.0 \mathrm{~A}$,
motor rated frequency $=60 \mathrm{~Hz}$,
F171 $=140 \%$, F172=0.20
Computation formula: $3.0 \mathrm{~A} \times 140 \%=4.2 \mathrm{~A}$
$60 \mathrm{~Hz} \times 0.20=12 \mathrm{~Hz}$

\bigcirc	F173	Torque Current Limit	$0.000 \sim 1.250$		1.000

- To set the torque current of the maximum load output from the AC drive.

Torque current $=A C$ drive Rated Output Current (rms) x (F173) Torque Current Limit Setting. $\times 2$
Ex.: 400 V series 5 HP ac drive, rated current 9.0 A .
Torque Current Limit $=9.0 \times 2 \times 1.000=18.000$

- Torque current limit is provided only for two types of control modes setup operation, F147 $=5$: Closed Loop Flux Vector Control, and 6 : Sensorless Flux Vector Control.
※ Caution: The ac drive must match with the motor.

\times	F174	Torque Current analog control source selection	$0 \sim 5$		0

- To set up the option of torque control command input from the following four analog input signals and PID control torque, to take the analog signal 100% to correspond the set value of F173. (this function is only active under F147 $=5$ Closed Loop Flux Vector Control mode, and 6: Sensorless Flux Vector Control mode, Please refer to F50 ~ F64 for setting the analog parameters.)
$\square 0$: Disabled - The analog torque control is disabled.
\square 1: Digital Operator Panel AV - Linear torque control is done by the input signal voltage ($\mathrm{DC} 0 \sim 5 \mathrm{~V}$) from the digital operator AV.
\square 2:AV1 - The torque current set by F173 corresponding to input signal voltage (DC $0 \sim \pm 10 \mathrm{~V}$) from the external terminal AV1 is applied to perform the linear torque control.

3:AV2 - The torque current set by F173 corresponding to input signal voltage (DC 0~10V) from the external terminal AV2 is applied to perform the linear torque control.
4: AI - The torque current set by F173 corresponding to input signal current ($4 \sim 20 \mathrm{~mA}$) or voltage (DC $0 \sim 10 \mathrm{~V}$) from the external terminal AI is applied to perform the linear torque control.
5: External PID - To perform torque PID feedback control. (Refer to PID Parameter Group F186-F200).

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F175	Torque Control Mode	$0 \sim 1$		0

0: Torque Current Limit - To follow the analog signals to perform torque current output limit.
\square 1: Torque Current Command(Over-speed trip) - To follow the analog signals to perform torque current output control.

\times	F176	Torque control over-speed tripping frequency setup	$0.0 \sim 400.0$	Hz	60.0

When using the torque current command control with a load coefficient smaller than the torque current command value, the increase of speed frequency will go up unlimitedly; therefore, if there is a safety concern in this regard, please set an upper limit to F176 Torque Control over-speed tripping frequency so that the ac drive will trip at an error code Err 24 when output limit exceeds this upper limit.

Standstill positioning

\times	F177	Closed loop vector control zero-speed positioning	$0 \sim 2$		0

$\square 0$ 0:Disabled

\square 1: Zero-speed positioning - When enabled this function, the internal control will lock the zero-speed that protect the rotor position of motor from drifting and rotating.
\square 2: Pulse frequency command position tracking - To take the pulse number as the speed command and position control command; please set relevant parameters to F153 \sim F155 and set the F15 upper-limit frequency to a frequency above 115% of operating command frequency.

\bigcirc	F178	Zero-speed positioning P gain	$2.00 \sim 100.00$	$\%$	30.00
\bigcirc	F179	Zero-speed positioning I gain	$0.00 \sim 100.00$	$\%$	20.00

Abnormality Records

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F180	Latest Abnormality Record	$0 \sim 60$		0
\times	F181	Last 1 abnormality Record	$0 \sim 60$		0
\times	F182	Last 2 abnormality Records	$0 \sim 60$		0
\times	F183	Last 3 abnormality Record	$0 \sim 60$		0
\times	F184	No. of auto-reset	$0 \sim 10$		0

- When taken place an abnormal tripping phenomenon when ac drive is running, F184 will automatically reset to clear the abnormality (Auto-reset is disabled when set to 0); for safety concern if any, please cancel F184 Auto-reset function.
- The number of time of auto-reset is to be set up by the user; and when the number of abnormality exceeds the established number of time, pressing the RESET pushbutton from the digital operation panel for clearance is required; or set the digital input terminal Di4 : RESET CLEARANCE to reset to zero the number of time of auto-reset.
- A default time setting to reset the abnormality automatically is 6 seconds; for equipment with a larger mechanical inertia, please refer to F6 functions to enable a time-delay for activating the operation.
- For an abnormality taken place at standby state F xx.xx, F184 will not reset automatically, pressing RESET pushbutton for clearing the reset is required.
- When taken place an abnormality when operation control source is set to F4: 0 Digital operation panel, F184 will automatically reset and restart the operation.
- When taken place an abnormality when operation control source is set to F4: 1 Digital input terminal, F184 will automatically reset and operate under the current control mode.

\times	F185	Abnormality Records Cleared	$0 \sim 1$		0

(o) Clear the Alarm trips stored in the memory.
\square 0: Not Cleared.
\square 1: Cleared.

Err Code	Description of Alarm Report
$\operatorname{Err} 0$	Digital operation panel communication failure
$\operatorname{Err}(\mathrm{U}, \mathrm{A}) 1$	Over voltage (Err U1) or current (Err A1)in standby status (Hardware detection protection)
$\operatorname{Err}(\mathrm{U}, \mathrm{A}) 2$	Over voltage (Err U2) or current (Err A2)during acceleration (Hardware detection protection)
$\operatorname{Err}(\mathrm{U}, \mathrm{A}) 3$	Over voltage (Err U3) or current (Err A3)during deceleration (Hardware detection protection)
$\operatorname{Err}(\mathrm{U}, \mathrm{A}) 4$	Over voltage (Err U4) or current (Err A4)during speed regulation (Hardware detection protection)
$\operatorname{Err} 5$	Heat sink overheated

R : Parameter is changeable during operation (\bigcirc)

Err Code	Description of Alarm Report
Err 6	Dc Bus over voltage
Err 7	Low DC voltage during operation (L.V)
Err 8	Electronic thermal relay action (Motor overload)
Err 9	AC Drive voltage not matched to the motor voltage
Err 10	Software detected overload current protection
Err 11	AC Drive rated current range not matched to motor current
Err 12	Loss of output U-phase or U-phase C.T failure
Err 13	Loss of output V-phase or V-phase C.T failure
Err 14	Loss of output W-phase or W-phase C.T failure
Err 15	Reserved
Err 16	Encoder direction opposite to the phase sequence on the output side
Err 17	Encoder signal abnormality
Err 18	Parameter detection failure (Auto-tuning failure)
Err 19	Position-tracking error greater than 40 turns
Err 20	Overload ($150 \%, 60 \mathrm{sec}$), VT series is $120 \%, 60 \mathrm{sec}$
Err 21	PG off-line detection
Err 22	Break wire detected analog signals AI
Err 23	Absence of speed feedback affecting performance of closed loop control
Err 24	Torque control overrides the F176 overspeed setting
Err 25	EEPROM parameter read back out of range
Err 26	Digital operation panel storage parameter write failure
Err 27	DSP storage parameter locked and preventing modification.
Err 28	Operator panel storage parameter locked and preventing modification
Err 29	External input abnormality
Err 30	3-phase current amplitude difference too big
Err 31	Current leakage or abnormal 3-phase current sum
Err 32	PUF fuse burnt out
Err 33	Power failure or too low mains input phase voltage
Err 35	Error in automatic operation time setup
Err 36	Digital input terminal setup repeated.
Err 15, Err 34, Err 37~Err 60 Are signals reserved for failure.	

External PID

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F186	Setup PID Mode	$0 \sim 4$		0

0 : PID Disabled - PID control not activated.
\square 1: PID Stop Setting Zero-in - In PID control, the final PID control value is not memorised.
\square 2: PID Stop Setting Reserved - In PID control, the final PID control value is memorised when the of operation command stops; when the operation command is reactivated, the memorised PID value acts as the initial PID value for control.
\square 3: DI enabled (PID Stop Setting Zero-in) - With PID control activated by the multifunction input terminal, the final PID control value is not memorised when the operation command stops.
\square 4: DI enabled (PID Stop Setting Reserved) - With PID control activated by the multifunction input terminal, the final PID control value is memorised when the operation command stops; when the operation command is reactivated, the memorised PID value acts as the initial value of PID for control.

\times	F187	PI Target Value Input Options	$0 \sim 8$		0

© Input terminal is selected to function as the PI setpoint frequency command.

Setting	Function	Description of Function		
0	PI initial value setup	PI setpoint command \% value is directly set up by Parameter (F190).		
1	AV1 Input	- External command value, analog signal command input terminal. - Gain and shifting of analog frequency command is adjusted by Paramete F52~F66		
2	AV2 Input			
3	AI Input			
4	Pulse Frequency Command Value	- In	external setpoint value	pulse signal (option
5	Encoder (PG) feedback Value		AB 2) frequency comm 155.	is set up by Parame
6	RAMP output	- S	Output (Acceleration/Dec	leration time curvat
7	Total output current	İ		$i ø=$ Excitation c
8	Torque current	η		Torque

R : Parameter is changeable during operation (\bigcirc)

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F188	PI Feedback Input Options	$0 \sim 8$		0

© Input terminal is selected to function as the PI feedback detection source.

Setting	Function	Description of Function		
0	PI initial value setup	- The PI feedback-detected value in \% is directly set up by Parameter (F190)		
1	AV1 Input	- External feedback value, analog signal command input terminal - Gain and shifting of analog frequency command is adjusted by Paramete F52~F66		
2	AV2 Input			
3	AI Input			
4	Pulse Frequency Command Value	- Input of external setpoint value of pulse signal (option card PG- AB2) frequency command is set up by Parameters F148~F155.		
5	Encoder (PG) feedback Value			
6	RAMP output	- S curve Output (Acceleration/Deceleration time curvature)		
7	Total output current	\hat{I}	Total $\hat{I}=\sqrt{i \emptyset^{2}+i J^{2}}$ $i \varnothing=$ Excitation current $i J=$ Torque current	
8	Torque current	η		

\times	F189	D Input Options	$0 \sim 8$		0

(O) Input terminal is selected to function as the D feedback-detecting source.

Setting	Function	Description of Function		
0	PI Error	- The error calculated between the PI target value and the detected value is the source for D feedback input.		
1	AV1 Input	- External feedback value, analog signal command input terminal - Gain and shifting of analog frequency command is adjusted by Paramete F52~F66		
2	AV2 Input			
3	AI Input			
4	Pulse Frequency Command Value	- Input of external setpoint value of pulse signal (option card PG- AB2) frequency command is set up by Parameters F148~F155.		
5	Encoder (PG) feedback Value			
6	RAMP output	- S curve Output (Acceleration/Deceleration time curvature)		
7	Total output current	\hat{I}	Total $\hat{I}=\sqrt{i \emptyset^{2}+i J^{2}}$ $i \varnothing=$ Excitation current $i J=$ Torque current	
8	Torque current	η		

※ ATTENTION! The feedback input type of F188 and F189 shall not be the same type used for the setpoint input of F187.

-Description of parameter functions-

R	Parameter	Description	Range	Unit	Ex-factory Setting
\bigcirc	F190	PI Initial Value Setup	$0.00 \sim 100.00$	$\%$	50.00

() This parameter is to set up a constant command target value or a feedback value to proceed the control; however, the target source and the feedback source cannot be set up this function at the same time.

\bigcirc	F191	D input filtration time setup	$0.05 \sim 10.00$	Sec	0.20

(o) Derivative input is connected to a low pass filter to filter high frequency noise with the time constant $\tau=$ F191/2.3

\bigcirc	F192	PID Output Limit	$0.00 \sim 100.00$	$\%$	100.00

This parameter is to be used for PID control with \% as the unit of output limit, and the upper limit of PID control is 100%, the highest output frequency.

\bigcirc	F193	Unit 1 Kp Gain	$2.00 \sim 300.00$	$\%$	100.00
\bigcirc	F194	Unit 1 Ki_H Gain	$0.0 \sim 3000.0$	$\%$	200.0
\bigcirc	F195	Unit 1 Ki_L Gain	$0.0 \sim 3000.0$	$\%$	100.0
\bigcirc	F196	Unit 1 Kd Gain	$0.0 \sim 3000.0$	$\%$	20.0
\bigcirc	F197	Unit 2 Kp Gain	$2.00 \sim 300.00$	$\%$	100.00
\bigcirc	F198	Unit 2 Ki_H Gain	$0.0 \sim 3000.0$	$\%$	5.0
\bigcirc	F199	Unit 2 Ki_L Gain	$0.0 \sim 3000.0$	$\%$	5.0
\bigcirc	F200	Unit 2 Kd Gain	$0.0 \sim 3000.0$	$\%$	5.0

Kp Control: The operation gain amounts to the proportional change of output. The response gets faster when a higher gain is entered, however, excessively large gain generates output instability. The response gets slower when a smaller gain is entered. Note: The gain of the KP control should not be entered as 0 .
Ki Control: The operation gain amounts to integral change of output; the effective response is achieved by having the feedback value to be same as setpoint value. The response is faster when a higher integral gain is entered; however, excessive large gain will generate output instability.

Kd Control: The operation gain amounts to the rate of output changes; This gives a faster response to any sudden change. The output change will decay faster when a higher differential gain is entered; however, excessively large gain will generate output instability.
(1) There are two units of PID parameter settings available to perform switched operation control by using the digital multi-function terminal inputs.
© The conversion between PID controller setpoint and feedback values is described as follows:
The speed command value set by F52~F66, the input analog voltage or current is divided by (F15) speed upper limit to give the $\%$ value.
For Example: F57 $=10 \%$, $\mathrm{F} 58=100 \%$, $\mathrm{F} 15=100.0 \mathrm{~Hz}$
$(\mathrm{F} 187$ or F 188$)=2:$ AV2
Voltage $\%=100 \times\{(2 / 10) \times(60 / 100 \times 100)+(60 / 100 \times 10)\} / \mathrm{F} 15=18 \%$
$4 \sim 6: \%=100 \times($ feedback speed/speed upper limit)
$7 \sim 8: \%=100 \times($ current value : current sensor when the current detector outputs 5 V)
(2) Ki gains ($\mathrm{Ki}_{-} \mathrm{L}$ and Ki H) at the zero-speed and the speed upper limit can be respectively set up. The settings will change proportionately according to the absolute value of speed command changes. ($\mathrm{Ki} \mathrm{I}_{\mathrm{L}} \leq \mathrm{Ki} \mathrm{H}$)
(3) Kp gain setting corresponds to (F15) speed upper limit. Kp gain is automatically adjusted within the range of the speed upper limit according to change of multiplication of Ki gain.
(4) If the setting for the $\mathrm{Ki}_{-} \mathrm{L}$ is the same as that given to $\mathrm{Ki}_{-} \mathrm{H}$, then both Kp gain and Ki gain will not vary according to the speed.

(5) Kd gain will not change according to speed command
(6) When PID output acts as the speed command, $100 \%=$ F15 (speed upper limit).

(7) When the PID output acts as the torque current limit, $100 \%=$ F173 (Limit current).

PID Control Block Chart :

Note 1 : ex-factor (PI) integration time ($5-10 \mathrm{sec}$.)

Special parameter setup

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F201	Set the minimum working pressure	$1.0 \sim 20.0$	$\%$	2.0

An application parameter relevant to the Parameter F5: Speed command source and 8 : AV2 + external PID control mode.
(1) Unless otherwise the pressure mode at minimum pressure is enabled at PID command value $<$ Parameter F201, and AV2 $<0.5 \%$, it is under general control mode.
(2) Under the general control mode :
(A) If PID command value $<$ Parameter F201, and AV2 $\geqq 0.5 \%$, then it is in general control mode.
(B) When PID command value \geqq Parameter F201:
(a) Under general control mode :

If PID feedback value $<$ PID command value, then it stays at general control mode.
If PID feedback value \geqq PID command value, then it enters into PID control mode.
(b) Under PID control mode :

If PID command value \geqq Parameter F201, then it stays at PID control mode.
If PID command value $<$ Parameter F201, then it ends the PID control mode.

No. 2.31 Special-Purpose

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F202	Longest outage duration allowable	$0 \sim 5000$	ms	20

- If the power outage time is less than the allowable set value of time, it will follow the cycle of sequence to restart machine; otherwise, it will trip directly and display Err7 (DC voltage too low). During the low-voltage period, PWM output will be turned off and "Lu" warning will be displayed at the same time.
※ Current vector control mode is not suitable for the function to follow the cycle of sequence to restart machine after power restoration from power outage.

Communication setup

\times	F203	AC Drive Communication Address	$1 \sim 255$		1

The address range of the ac drive communication falls between $1 \sim 255$, representing the address of the ac drive in the communication network. The remote controller (PC or PLC) must be given remote control of the communication address set for each ac drive. (Note 1)

Note1: No AC drive shall have the same communication address within the same communication network.

\times	F204	PC Transmission Rate	$0 \sim 4$		2

2400 Bps transmits $2400 / 8=300$ bytes per second.
The type of transmission cable and its length affect the transmission rate. In the case of longer cable being used, the cable with slower transmission rate is preferred to compensate for a higher transmission quality and stability. If faster response speed is expected from the ac drive, adjust for higher transmission rate or adjust(F206) ac drive response time.
0: 2400
1: 4800
2:9600
3: 19200
4:38400

\times	F205	PC Communication Data Format	$0 \sim 3$		0

$$
\begin{aligned}
& \square 0: 8, \text { N, } 1 \text { RTU (} 1 \text { start bit }+8 \text { data bits }+1 \text { stop bit }) \\
& \square 1: 8 \text {, E, } 1 \text { RTU (} 1 \text { start bit }+8 \text { data bits }+1 \text { Even bit }+1 \text { stop bit }) \\
& \square 2: 8 \text {, O, } 1 \text { RTU (} 1 \text { start bit }+8 \text { data bits }+1 \text { Odd bit }+1 \text { stop bit }) \\
& \square 3: 8 \text {, N, } 2 \text { RTU (} 1 \text { start bit }+8 \text { data bits }+2 \text { stop bits })
\end{aligned}
$$

\times	F206	Response time of frequency inverter	$3 \sim 50$	ms	5

※ The response time of the ac drive is the delay time between the time the ac drive receives command signal from the remote controller and the time the it sends its response signal. The time between the response time of the remote controller from one transmitted package to the next may vary, If the response time of the ac drive is too short and not matching to the response time of the remote controller, the response signal may get overlapped with the command signal in the communication network. Therefore, the response time for the ac drive must be set to that of the remote controller.

\times	F207	Receive Failure Response	$0 \sim 7$		0
\square 0: Normal Receiving \square 4: Packet-receiving time exceeds 0.2 second					
\square 1:Function Code Error $\square 5$ 5: Informally alter the parameters during the operation					
\square 2:CRCL Error $\quad \square$ 6:Parametric value out of range					
\square 3: CRCH Error					

II. Use instruction of computer communication software

Setup of communication parameters for ac drive and switch changeover method of hardware
(The digital operation panel is required to perform the following setups)

1. When applying the computer software for communication, the communication parameters (F203 ~ F206) shall be established first by digital operation panel.
2. Setup of parameters: F203: communication address of ac drive, F204: PC transmission rate, F205: communication data format, F206: response time of ac drive, etc. Please select the required communication rate and data format corresponding to the PC in order to access a normal linking for communication.
3. After finishing the setup of parameters for software, please disengage the digital operation panel from ac drive, and set the 1 st, 2 nd and 3 rd pins ON from the SW1 in the motherboard of ac drive. (Please refer to P2-10 in Application Manual).

Connection of hardware

1. For PC serial communication ports (COM. PORT), route it to RS485 device with a RS232, and then connect the signal line to the SG+ and SG-, two terminals at the terminal block of AC drive.
2. For PC Universal Serial Bus, route the USB to the RS485 signal converter, and then connect the signal line to the $\mathrm{SG}+$ and SG -, two terminals at the terminal block of AC drive.

Set SW1 Pin3-ON for RS485 MODBUS communication format and pin3-OFF for RS485 digital operation panel format.
\square Pin4 of SW1 is a terminal resistance for RS485 communication (120R).

MODBUS Communication

LS800 series:

Dil	Di2	Di3	Di4	Di5	Di6	Di7	Di8	FM1	FM2	Dol	Do2	Do3	Ta1	Tb1	Tc1
SG-	SG+	AV1	AV2	AI	$+10 \mathrm{~V}$	AVG	-10V	24 V	COM	COM	COM	E	Ta2	Tb2	Tc2

The RS-485 is the internally exclusive communication format for digital operation panel(Note 1); and a different communication format shall be applied to the external (SG-, SG+) MODBUS communication monitoring(Note 2); do not connect them at the same time for operation; only single format is allowed to be enabled.

Note 1: The internally used signals are signals for digital operation panel to perform the operation and control.
Note 2: The externally used signals are signals to perform the external monitoring that are input from the signal terminal SG-, SG+ of RS485 Modbus to the terminal block; the sources are PLC and Computer, etc.
Please refer to P2-10 for description of relevant setup.

Communication procedures between RS485 MODBUS and PLC

(1) When selected the RS485 communication method to carry out the monitoring and control of ac drive, for the first thing, the digital operation panel shall be taken to establish the parameters of communication mode (F203 ~ F207).
F203 : Communication address of ac drive (1~255)
Caution : The legal communication addresses are ranging from 1 to 255 ; if the communication address is set to 0 , it means to perform a broadcasting to all motor actuator. Under such a mode, the motor actuator will not respond any message to the master device.

F204: PC transfer rate ($0 \sim 4$)

$$
0: 2400, ~ 1: 4800, ~ 2: 9600, ~ 3: 19200, ~ 4: 38400
$$

F205 : Communication data format ($0 \sim 3$)

$$
0:(8, N, 1) \text { RTU (} 1 \text { Start bit }+8 \text { data bits }+1 \text { stop bit })
$$

$1:(8, \mathrm{E}, 1)$ RTU (1 Start bit +8 data bits +1 Even bit +1 stop bit $)$

F206: Responding time of ac drive ($\mathbf{3} \sim \mathbf{5 0 m s}$)

(1) When taking the RS485 MODBUS communication to control the ac drive is desired, please set up the F4-Operation control source to 0 : Digital operation and the F5Frequency command source to 0: Digital operation. The rest of mode setups are for operation-monitoring functions. (Digital operation panel is configured in digital data format).
(2) Please disengage the digital operation panel and the ac drive; and set the SW1 functional dip switch NO. 3 (OFF) from the motherboard for internal communication and set NO. 1 (ON), NO. 2 (ON), NO. 3 (ON) for external communication.
(3) When communication has no response, just read the receiving failure code (F207) to find out the causes.

0: Receiving normal
 1: Function code error
 \square 2: CRCL error
 3: CRCH error

4: Packet-receiving time exceeds 0.2 second
\square 5: Informally alter the parameters during the operation \square 6: Set Parameter value out of range
(4) Communication data structure (the data contents are 16-bits numbered format)
i. Keep the no-input-signal state $\geq 10 \mathrm{~ms}$ vi. Set value Content (H)
ii. communication address
iii. functional code
iv. Parameter code Content (H)
v. Parameter code Content (L)
vii. Set value Content (L)
viii. Check code (CRCL)
ix. Check code (CRCH)
x. Keep the no-input-signal state $\geq 10 \mathrm{~ms}$
(5) Function code :

03H : To read the parameters set to and displayed by ac drive
$06 \mathrm{H}:$ To write in the operation parameters of ac drive and set up parameters
08 H : Loop detection

1. To read the parameters set to AC drive $(\mathrm{D} 2=03 \mathrm{H}, \mathrm{D} 3=00 \mathrm{H})$
A. PC calls :

D1: Communication address (00~FFh)
D2: Function code (03h)
D3: \# th set parameter (H) (00h)
D4: \# th set parameter (L)
(00~D2h)
D5: Number of data entry (H) (00h)
D6: Number of data entry (L) (0nh)
D7: CRCL
D8: CRCH
B. AC drive responds :

D1: Communication address
(00~FFh)
D2: Function code
(03h)
D3: Number of byte for parameter content $2 *$ (0 nh)
D4: Content of set parameter 1 (H) (00~FFh)
D5: Content of set parameter 1 (L) (00~FFh)

Dm-3: Content of set parameter $\mathrm{n}(\mathrm{H}) \quad(00 \sim \mathrm{FFh})$
Dm-2: Content of set parameter $n(L)$
($00 \sim \mathrm{FFh}$)
Dm-1: CRCL
Dm: CRCH
$※ m=5+2$ 米n
※Number of data entry $n=1 \sim 12$
Ex. : To read the set values of parameters from the ac drive (F17 Note 1, F18)
Responding data: $F 17=60.00 \mathrm{~Hz}, ~ F 18=5.00 \mathrm{~Hz}$ Note 2
Note $1: F 17=0012 h$, Number of data entry: 2 entries
Note 2 : Responding data will be displayed without decimal points, so

$$
60.00 \mathrm{~Hz}=6000=1770 \mathrm{~h}, 5.00 \mathrm{~Hz}=500=01 \mathrm{~F} 4 \mathrm{~h}
$$

Calling commands at PC side are as follows:		Responding data from ac drive are as follows:	
Communication address	01 h	Communication address	01 h
Function code	03 h	Function code	03 h
17th set parameter (H)	00 h	Number of data entry	04 h
17th set parameter (L)	12 h	Contents of F17 parameter (H)	17 h
Number of data entry (H)	00 h	Contents of F17 parameter (L)	70 h
Number of data entry (L)	02 h	Contents of F18 parameter (H)	01 h
		F4h	
CRCL	64 h	CRCL	FEh
CRCH	0 Eh	CRCH	4 Bh

2.To the parameters displayed by AC drive ($\mathrm{D} 2=\mathbf{0 3 H}, \mathrm{D} 3=\mathbf{2 1 H}$)

Ex. : To read the indicating values from the operation of ac drive (2101 h , output frequency Note 1) (Responding data : 60.00 Hz Note 2)

※Note $1: 2101 \mathrm{~h}=8449$, Number of data entry: 1 entries
Note 2 : Responding data will be displayed without decimal points, so $60.00 \mathrm{~Hz}=6000=1770 \mathrm{~h}$

R : Parameter is changeable during operation (\bigcirc)

Calling commands at PC side are as follows:		Responding data from ac drive are as follows:	
Communication address	01h	Communication address	01h
Function code	03h	Function code	03h
Read the indicating parameter (H)	21h	Number of data entry	02h
Read the indicating parameter (L)	01h	Operation-indicating value (H)	17h
Number of data entry (H)	00h	Operation-indicating value (L)	70h
Number of data entry (L)	01 h	
CRCL	DFh	CRCL	B6h
CRCH	F6h	CRCH	50h

Response-display parameters :	Data format in expression	Response-display parameters :	Data format in expression
0 : Frequency command (F)	xxx.x(Hz) or $\mathrm{xxxxx}(\mathrm{Rpm})$	19: Reactive Power (\%)	xxx.x
1: Output Frequency (H)	xxx.x(Hz) or $\mathrm{xxxxx}(\mathrm{Rpm})$	$20:$ Temperature (${ }^{\circ} \mathrm{C}$)	XXX
2 : Output current (A)	xxx.x	21 : Count value	xxxxx
3 : Output voltage (E)	xxX.X	22 : Digital input status	Di8 Di7 Di6 Di5 Di4 Di3 Di2 Di1
4: PG feedback rpm (n)	xxx.x(Hz) or $\mathrm{xxxxx}(\mathrm{Rpm})$	23 : Digital output status	BK Do1 Do2 Do3 Relay1 Relay2
5 : Pulse frequency command	xxx.x(Hz) or $\mathrm{xxxxx}(\mathrm{Rpm})$	24 : Digital operation AV (\%)	xxx.x
6 : Sensorless Vector Output Speed	xxx.x(Hz) or xxxxx (Rpm)	25 : AV1(\%)	XXX.X
7 : Output power supply frequency	xxx.x(Hz) or $\mathrm{xxxxx}(\mathrm{Rpm})$	26 : AV2(\%)	XXX.X
8 : unitless	XXXX. ${ }^{\text {x }}$	$27: \mathrm{Al}(\%)$	XXX.X
9: Slip Frequency	xxx.x(Hz) or $\mathrm{xxxxx}(\mathrm{Rpm})$	$28:$ Vdc_0	xxxx
$10: \mathrm{Vdc}(\mathrm{V})$	xxx	29 : Cycle No. \& multi-stage No.	\# \# \# \#Cycle. \# \#speed
11 : Excitation voltage	xxx.x	30 : K_Vdc	XXXX
12: Torque voltage	xxx.X	31 : Phase U current (rms)	XXX.X
13 : Excitation Current command	XXX.X	32 : Phase V current (rms)	XXX.X
14: Torque current command	XXX.X	33 : Phase W current (rms)	xxx.x
15 : Excitation Current	xxX.X	34 : PID(\%)	xxxx
16: Torque current	XXX.X	36 : Software version	X.xX
17 : Output Power (\%)	XXX.X	37 : Position-tracking error	XX
18 : True Power (\%)	xxx.X	35, 38~40 : Reserved	

3.To write in the operation parameters of $A C$ drive $(\mathrm{D} 2=\mathbf{0 6 H}, \mathrm{D} 3=\mathbf{2 0 H})$

A. PC calls:

D1: Communication address	$(00 \sim$ FFh $)$
D2: Function code	$(06 \mathrm{~h})$
D3: \#th operating parameter (H)	$(20 \mathrm{~h})$
D4: \#th operating parameter (L)	$(00 \sim 00 \mathrm{~h})$
D5: Write-in content of parameter (H)	$(00 \sim \mathrm{FFh})$
D6: Write-in content of parameter (L)	$(00 \sim \mathrm{FFh})$
D7: CRCL	
D8: CRCH	

B. AC drive responds:
D1: Communication address
(00~FFh)
D2: Function code
(06h)
(20h)
D3: \#th operating parameter (H)
(00~01h)
D4: \#th operating parameter (L)

D5: Write-in content of parameter (H) (00~FFh)
D6: Write-in content of parameter (L) ($00 \sim \mathrm{FFh}$)
D7: CRCL
D8: CRCH

2000h(Operation control) : 0: Stop 1: FWD 2 :REV 3: Inching FWD 4:Inching REV 5: Failure reset

4.To write in the set parameters of $A C$ drive $(D 2=06 H, D 3=00 H)$

A. PC calls:

D1: Communication address	$(00 \sim \mathrm{FFh})$
D2: Function code	$(06 \mathrm{~h})$
D3: \#th set parameter (H)	$(00 \mathrm{~h})$
D4: \#th set parameter (L)	$(00 \sim \mathrm{D} 2 \mathrm{~h})$
D5: Write-in content of parameter (H)	$(00 \sim \mathrm{FFh})$
D6: Write-in content of parameter (L)	$(00 \sim \mathrm{FFh})$
D7: CRCL	
D8: CRCH	

(00~FFh) (06h)
(00h)
(00~D2h)
(00~FFh)
(00~FFh)
D8: CRCH
B. AC drive responds:

D1: Communication address	$(00 \sim \mathrm{FFh})$
D2: Function code	$(06 \mathrm{~h})$
D3: \#th set parameter (H)	$(00 \mathrm{~h})$
D4: \#th set parameter (L)	$(00 \sim \mathrm{D} 2 \mathrm{~h})$

D5: Write-in content of parameter (H) (00~FFh)
D6: Write-in content of parameter (L) ($00 \sim \mathrm{FFh}$)
D7: CRCL
D8: CRCH

Only the speed command setups can be changeable during operation: F17~F25.
Ex. : (1) Writing to enable the AC drive to perform setup in 50.00 Hz Writing to enable the AC drive to perform the running command 2000h: 1, FWD running
※ Note 1: F17 $=0012 \mathrm{~h}, 50.00 \mathrm{~Hz}=5000=1388 \mathrm{~h}$
Note 2: Running command $=2000 \mathrm{~h}=8192$, FWD rotation $=0001 \mathrm{~h}$

Calling commands at PC side are as follows:	(1) 50 HZ	(2) FWD running	Responding data from ac drive are as follows:	(1) 50 HZ	(2) FWD running
Communication address	01 h	01 h	Communication address	01 h	01 h
Function code	06 h	06 h	Function code	06 h	06 h
17th set parameter (H)	00 h	20 h	17 th set parameter (H)	00 h	20 h
17th set parameter (L)	12 h	00 h	17 th set parameter (L)	12 h	00 h
Data content (H)	13 h	00 h	Content of set Data (H)	13 h	00 h
Data content (L)	88 h	01 h	Content of set Data (L)	88 h	01 h
CRCL	24 h	43 h	CRCL	24 h	43 h
CRCH	99 h	CAh	CRCH	99 h	CAh

5. Loop detection (D2=08H)

08H : Loop detection

A. PC calls	
D1: Communication address	$(00 \sim \mathrm{FFh})$
D2: Function code	$(08 \mathrm{~h})$
D3: Test content of parameter $(1)(00 \sim \mathrm{FFh})$	
D4: Test content of parameter $(2)(00 \sim \mathrm{FFh})$	
D5: Test content of parameter $(3)(00 \sim \mathrm{FFh})$	
D6: Test content of parameter $(4)(00 \sim \mathrm{FFh})$	
D7: CRCL	
D8: CRCH	

B. AC drive responds:

D1: Communication address $\quad(00 \sim \mathrm{FFh})$
D2: Function code (08h)
D3: Test content of parameter (1) (00~FFh)
D4: Test content of parameter (2) (00~FFh)
D5: Test content of parameter (3) (00~FFh)
D6: Test content of parameter (4) (00~FFh)
D7: CRCL
D8: CRCH

Ex. : Loop testing commands

Calling commands at PC side are as follows:		Responding data from ac drive are as follows:	
Communication address	01 h	Communication address	01 h
Function code	08 h	Function code	08 h
Test content of parameter (1)	01 h	Test content of parameter (1)	01 h
Test content of parameter (2)	02 h	Test content of parameter (2)	02 h
Test content of parameter (3)	03 h	Test content of parameter (3)	03 h
Test content of parameter (4)	04 h	Test content of parameter (4)	04 h
CRCL	41 h	CRCL	41 h
CRCH	04 h	CRCH	04 h

CRC production steps :

1. $\mathrm{CRC}=0 \mathrm{FFFFh}$
2. $\mathrm{CRC}=(\mathrm{CRC}) \mathrm{XOR}(\mathrm{DATA} 1)$
3. Determine if CRC's bit 0 is 1 ?

Yes: CRC $=(\mathrm{CRC} \gg 1)$ XOR (0 A 001 h)
No: CRC = CRC >> 1
※ >>1 : right-shift for one digit, input 0 to higher bits.
4. Again, repeat the step 3 for 7 times (that is, the step 3 shall be executed 8 times in total)
5. Download the data of next entry DATA2
6. Repeat steps $2 \sim 4$
7. Repeat steps 5 and 6 until all the data have been executed.

Storage, Recalling Parameters

R	Parameter	Description	Range	Unit	Ex-factory Setting
\times	F208	Recall Parameter	$0 \sim 2$		0

\square 0: Not Recalled.
\square 1: Recall Ex-factory Setup - Recall the ex-factory setting (F129, F130, F141~F146, F156~F161 are not affected).
\square 2: Recall Parameter Settings Saved in Digital Operation Panel - Recall the parameter settings from digital operation panel saved in the AC drive.

\times	F209	Copy \& save the parameter in digital operation panel	$0 \sim 1$		0

0: Not Saved.
1: Saved in Digital Operation panel - To save the modified parameter settings into the digital operator.
※ Note 1 - Every digital operator is equipped with an EEPROM memory for record storage without external power supply. The memory capacity for each time is able to function for saving the backup and parameter-copying from all the set value of parameter for one ac drive. To copy the set value of parameter is available by using parameter $F 208=2$: recall the set value of parameter stored in the digital operator. This function will recall the set values of parameter stored in the digital operator, and save them in the RAM memory in DSP automatically.
※ Note 2 - To use the parameter-copying function to set up parameter-copying for multiple units of ac drive is only available under the conditions of identical voltage level, capacity, control mode, etc.

\times	F210	Lock up EEPROM Parameters	$0 \sim 1$		0

0 : Unlock parameters - To modified all parameter settings into the EEPROM of DSP chip.1: Lock up Parameters - This function is able to lock most of the contents of parameters; the contents are unchangeable and for display only.
※ Parameters F0, F17 are exempted from this restriction of locking the functional parameters.

VI

PROTECTION \& TROUBLESHOOTING

- Abnormality Diagnosis...............................6-1
- Most Frequently Used Troubleshooting...6-5

Abnormality Diagnosis

This Chapter describes the display of abnormality found with the ac drive and coping measures, as well as the troubleshooting in case of any abnormality found with the motor.
$<$ Table $>$ Abnormality Display \& Coping Measures

Display	Description	Cause	$\begin{array}{c}\text { Coping Measures }\end{array}$
Err 1	$\begin{array}{l}\text { Over voltage } \\ \text { (U1) or current } \\ \text { (A1) in standby } \\ \text { status }\end{array}$	$\begin{array}{l}\text { - Excessively high voltage at input(R. } \\ \text { S.T) source resulting in that the } \\ \text { voltage on the DC bus is over the } \\ \text { voltage detected level. } \\ \text { Possible shortage between phases or } \\ \text { shortage to the grounding of the } \\ \text { output cable. }\end{array}$	$\begin{array}{l}\text { - Drop the voltage to fall within the } \\ \text { range of power source } \\ \text { specification. }\end{array}$
\bullet Check the output cable and			
remove any shortage when			
confirmed.			

$<$ Table $>$ Abnormality Display \& Coping Measures

Display	Description	Cause	Coping Measures
Err 8	Electronic thermal relay action (Motor overload)	- Motor load current is greater than the built-in electronic thermosensitive setting (F95, F96 and F142).	- Improve the load to motor and check for correct parameters (F95, F96 and F142). - Slightly increase the F95 thermal relay initiation of position.
Err 9	AC drive voltage not match the motor voltage	- F141 motor rated voltage not be less than 1.5 X of the input voltage of the ac drive. (F129)	- Change the motor voltage grade and check parameters F129, F141.
Err 10	Software-detected overload current protection	- Peak amperage of U.V.W on the output side of the driver greater than 2.8 X of the rated amperage. - If acceleration time too short - If impact amperage for operation gets too large	- Check for normal operation of motor \& mechanical system - Check the setting of acceleration time parameter - Replace with a driver of larger capacity
Err 11	AC drive rated current range not match motor current	- F142 motor rated current not be less than 9X of the rated current of the ac drive.	- Change motor capacity, and check the setting of parameter F142 (small motor capacity prevents control and protection.)
Err 12	Loss of output U-phase or U-phase C.T failure	- Phase wire of U.V.W on output side of the ac drive and motor wiring not secured or open - failure to internal current sensor (C.T)	- Check the wiring loops before restoration of power. - Return to the genuine maker of service.
Err 13	Loss of output V-phase or V-phase C.T failure		
Err 14	Loss of output W-phase or W-phase C.T failure		
Err 16	Encoder direction opposite to the phase sequence on the output side	- PG revolution direction is opposite to that of the motor operation	- Switch between PG Phase A and B or change the settings of Parameter F150.
Err 17	Encoder signal (PG) abnormality	- PG wiring error - PG pulse number (F149) setting error - Wrong power supply to PG	- Check the PG wiring. - Check the parameter settings. - Supply correct power source
Err 18	Parameter detection failure	- Motor electric parameter autotuning failure 。	- Check for correct settings of Parameters F141~F146 - Manually operate motor data and input results into motor electric parameter group (F156~F160). Refer to P5-43
Err 19	Position-tracking error greater than 40 turns	- Too big rpm deviation or overload - Maybe acceleration / deceleration time too short	- Lighten the motor load, verify the mechanical system. - Extend the acceleration/ deceleration time.

$<$ Table $>$ Abnormality Display \& Coping Measures

Display	Description	Cause	Coping Measures
Err 20	$\begin{aligned} & \text { Overload } \\ & (150 \%, 60 \mathrm{Sec} .) \end{aligned}$	- Short-circuit or grounding taken place at output side of ac drive (Contacted or grounded due to motor burnt out, aged insulation, broken wires, etc.) - Ac drive loaded a current in excess of rated current by 150% for 60 seconds. - Applied a special motor, or a motor in excess of the maximum suitable capacity. - Output side of ac drive is override by the on-off of contactor.	- Check the cause, take remedy actions and restore power.
Err 21	PG off-line detection	- Broken wire of PG wiring.	- Fix and inspect the wire-broken place
Err 22	Break wire detected analog signals AI	- AI input current signals break - Whether application parameter F65 set an error (setting 1).	- Check the wiring circuit - Check the parameter F65
Err 23	Absence of speed feedback affecting performance of closed loop control	- Absence of setting up parameter F148 speed feedback at 1: Encoder PG.	- Set up Parameter F148
Err 24	Torque control over upper limit of speed	- Overshooting occurred - Command speed too high - Inappropriate F176 set value	- Readjust the gain - Recheck the commanding circuit and commanding gain - Confirm F176 set value
Err 25	EEPROM parameter read back out of range	- Failure in EEPROM, no data available, storage incomplete, or parameter setting out of range.	- Use the function of Parameter F208 = 1: Recall Ex-factory setting before setting up the motor nameplate parameter group, or check one by one the parameter settings for any challenge of the range. - If the step aforesaid fails, return it to genuine maker for service.
Err 26	Digital Operation panel storage parameter write failure	- Operator extension too long or subject to noise interference. - Operator memory failure.	- Improve wiring quality and length. - Replace the operator \& run the test again.
Err 27	DSP storage parameter locked and preventing modification	- Parameter storage is restricted to prevent from saving new data.	- If required, save the new parameter, and set Parameter F210 $=0$: Save Allowed.
Err 28	Operator panel storage parameter locked and preventing modification	- The parameter storage of the digital operator has been restricted	- Select Parameter F210 $=0$: Save Allowed

$<$ Table > Abnormality Display \& Coping Measures

Display	Description	Cause	Coping Measures
Err 29	External input abnormality	\bulletExternal abnormality signals are inputted from the multi-function input terminal (Di3~Di8).	\bullet Remove the cause of external abnormality.
Err 31	Current leakage or abnormal 3-phase current sum	\bullet Poor wiring or poor motor insulation.	\bullet Check the output (U.V.W)wiring and insulation for damage. Check if the setting for Parameter F98 is too small.
Err 32	PUF fuse burnt	\bullet Inverter output to motor by a wire short or motor leakage, caused damage to the fuse.	\bullet Check the cause and take coping measures before replacing the ac drive.
Err 33	Power failure or too low mains input phase voltage	\bullet Poor conduction of the breaker or EM contact. Loosening input power wiring terminal \bullet Drastic changes in the input power voltage	\bullet Check the cause and take coping measures before restoring the power.
Err 35	Error in automatic operation time setup.	\bullet All the automatic operation for 16 stages of speed are set at 0 (there is no operation time to be executed).	• Check the settings of Parameters
F105~F120.			

Most Frequently Used Troubleshooting

θ(Troubleshooting listed below can only be done by qualified technician or dedicated keeper of this machine. The manufacturer of this machine will not be liable for any failure of this machine due to failure to observe this statement.)

The motor just won't run?
Symptom : The motor fails to operate

§ Check to see if the source has been delivered to the R.S.T source terminals?

\rightarrow Turn on the power source
\rightarrow Disconnect the power supply and re-energize it.
§ Check to see if there is the voltage output from output terminals U.V.W?
\rightarrow Confirm the power source.
\rightarrow Follow the operation procedure to operate it.

§ Check to see if the motor shaft is deadlocked?

\rightarrow Ease off the load to the motor
\rightarrow Replace the motor
\rightarrow Check the mechanical construction

§ Wrong wiring ?

\rightarrow Examine and repair the wiring loops.

§ Protection functions enabled ?

\rightarrow Verify the displayed content in monitor.

§ Incorrect setting to the operation keyboard ?

\rightarrow Reconfirm the operation procedure

AC drive trips when starting the motor?

Symptom: An error code Err2 appears when starting or accelerating the motor (it may caused by the enabled protection function of over-current, or a momentary output current in excess of 200% of rated current, or a damaged IGBT module).

§ If the torque is insufficient upon activation of heavy load?

\rightarrow Change the setting of torque compensation

\S If the acceleration time is too short to match the GD ${ }^{\mathbf{2}}$ of the load?

\rightarrow Extend the acceleration time

§ Starting frequency too low?

\rightarrow Increase the starting frequency

§ Protection function enabled?

\rightarrow Confirm what is displayed on the monitor.

\S AC drive started when motor is idling?

\rightarrow To set the function of reactivation in the course of idling.
\S Incorrect setting to operation keyboard? electric leakage due to defective motor insulation?
\rightarrow Reconfirm
\rightarrow Replace with a good motor, or remove the output wires before feeding to activate; if trip insists Err2, it indicates failure of the ac drive; if not, the failure of the motor.

The ac drive trips when the motor is decelerating?

Symptom: Err 6 displays in the course of deceleration (over voltage protection function operates).

[^0]
Stationary operation trip ?

- Err 7 appears during operation.

§ Insufficient voltage of power source?

\rightarrow Review the capacity of power supply equipment and find out the cause to the low voltage; such as, check if the contacts of no-fuse-breaker of magnetic switch are in good condition

Err 6 appears during operation.

\S Load and motor or source voltage is to blame?
\S If any poor motor insulation leading to leakage?
\rightarrow Install a DC brake resistance (optional) exclusively for external use.
\rightarrow Remove the output wire before feeding the electricity and activating; if Err6 displays, it indicates that the ac drive fails ; if Err 6 display disappears, it indicates leakage from the motor, replace the motor.

VII
 TEST, INSPECTION \& MAINTENANCE

- Test, Inspection, \& Maintenance................7-1

TEST, INSPECTION, \& MAINTENANCE

Cautions:

$>$ A maintenance professional shall confirm the current status of power supply switch in person. In order to ensure the safety of operation, strictly keep the power switch from the reach of irrelevant personnel with an identification label hung on the switch.

Within a short period of time right after disconnection the power supply, there will be DC high voltage remained at the electrolytic capacitor of large capacity in the internal rectification loop of the ac drive. For this reason, please make sure to see if the (CHARGE) light is off before performing the substrate inspection.

Highlights of Periodical Maintenance

Oxternal terminals, components, and screws:
Is there any loosening screw and connector? \longrightarrow If yes, install or tighten up.
Cooling Fans:
Is there any abnormal sound or vibration?
\longrightarrow If yes, replace or clean up.
Capacitor and parts:
Is there any discoloration, carbonization or odor?

Heat sink fins, Circuit board:
Any dust built up or attached with
Conductive chips, oil stain?
\longrightarrow If yes, return to the factory to replace the capacitor or the component of the inverter.
\longrightarrow If yes, use air gun to clear with dry air. (Never use any cleanser at own discretion.)

Daily Inspection Items

$>$ Motor follows the preset actions to run? Any faulty sound or vibration during operation?
$>$ If the cooling fans installed below the inverter operates normally? Any sign of abnormal temperature rise?
$>$ Check the output current detected by the monitor to see if it falls out of the normal range?
$>$ If the ambient temperature maintains normal? The installation environment is normal?
※ Please truly follow the check items listed in this manual to conduct them item by item to ensure this product is always maintained at a normal state for a long time.

CAUTION
The ac drive is comprised of many types of components, it depends on those parts and components for the ac drive to maintain and provide its expected functions. However, electronic parts usually are consumption items depending on the work environment and the use patter of the individual operator.
To maintain long-term normal operation, it is recommended to conductor periodical inspection and replacement as required.

VIII - Selecting Brake Resistance \& Brake Unit -

Selecting the Brake Resistance Capacity

WARNING

The temperature surrounding of the brake resistance will rise after the continuous discharging by brake resistance to expose the objects in the vicinity. Therefore, always keep those objects at least 2 M away from the brake resistance. Sufficient ventilation or additional fans shall be provided at where the brake resistance is installed.

- Selecting Brake Resistance \& Brake Unit - VIII

Ac drive						Specification			
Voltage	Applicable motor		Equivalent resistance specification W / Ω	BrakeTorque$(10 \% \mathrm{ED})$$\%$	Equivalent Min. resistance (Ω)	Brake Resistance Unit (module)		Externally Provided Unit Specification	Brake Unit SET
	HP	KW							
400 V	1	0.75	150W/300	200	150Ω			Included	
	2	1.5	300W/300	155	150Ω				
	3	2.2	500W/150	175	72Ω				
	5	3.7	800W/100	170	72Ω				
	7.5	5.5	1200W/80	155	40Ω	DR1K5W-80	1		
	10	7.5	1500W/60	155	40Ω	DR1K5W-60	1		
	15	11	2200W/50』	135	40Ω	DR3K1W-48	1		
	$20 \triangle$	15	3000W/40	125	20Ω	DR3K1W-40	1	LSBR-4015B	1
	$25 \triangle$	18.5	$3700 \mathrm{~W} / 32 \Omega$	125	20Ω	DR4K6W-30	1	LSBR-4030B	1
	$30 \triangle$	22	4400W/27.2 2	125	20Ω	DR4K6W-30	1	LSBR-4030B	1
	$40 \triangle$	30	6000W/20	125	14.3Ω	DR6K2W-20	1	LSBR-4030B	1
	$50 \triangle$	37	$7400 \mathrm{~W} / 16 \Omega$	125	14.3Ω	DR4K6W-30	2	LSBR-4030B	2
	$60 \triangle$	45	9000W/13.3 3	125	10Ω	DR4K6W-6.6	2	LSBR-4030B	2
	$75 \triangle$	55	11000W/10	125	6.6Ω	DR6K2W-20	2	LSBR-4030B	2
	$100 \triangle$	75	15000W/8	125	6.6Ω	DR6K2W-24	3	LSBR-4030B	3
	125	90	18000W/6.6 2	125		DR6K2W-20	3	LSBR-4030B	3
	150	110	$22000 \mathrm{~W} / 5.4 \Omega$	125		DR6K2W-20	4	LSBR-4030B	4
	175	132	$26400 \mathrm{~W} / 4.5 \Omega$	125		DR6K2W-20	4	LSBR-4030B	5
	200	160	32000W/3.7 7	125		DR6K2W-20	5	LSBR-4030B	6
	250	185	$37000 \mathrm{~W} / 3.2 \Omega$	125		DR6K2W-20	6	LSBR-4030B	7
	300	220	$44000 \mathrm{~W} / 2.7 \Omega$	125		DR6K2W-20	8	LSBR-4030B	8
	400	300	$60000 \mathrm{~W} / 2 \Omega$	125		DR6K2W-20	10	LSBR-4030B	10
	500	375	$75000 \mathrm{~W} / 1.6 \Omega$	125		DR6K2W-24	13	LSBR-4030B	13

$\triangle:$ An additional brake circuit can be fitted into the ac drive when placing the purchase order.

Selection of brake Resistance Unit

DR brake resistance Unit specifications

	el No.	Model	Connection
DR1K5W-R		R1. R2 wire gauge above 3.5 mm	
R	16Ω	Figure A	
	20Ω		
	24Ω		
	40Ω		
	K1W-R	R1. R2 wire gauge above 5.5 mm	
R	8Ω	Figure B	
	10Ω		
	12Ω		
	20Ω		
	32Ω	Figure B	$\mathrm{R} 1 \circ \square-\square \bigcirc \mathrm{R} 2$
	40Ω		
	48Ω		
	60Ω		
	K6W-R	R1. R2 wire gauge above 5.5 mm	
R	5.3Ω	Figure B	
	6.6Ω		
	8Ω		
	13.3Ω		
	12Ω	Figure B	
	15Ω		
	18Ω		
	30Ω		
	K2W-R	R1. R2 wire gauge above 8.0 mm	
R	4Ω	Figure C	$\square-\square$
	5Ω		
	6Ω		$\mathrm{R1O}$
	10Ω		$\square \square$
	16Ω	Figure C	
	20Ω		
	24Ω		
	40Ω		

- Description of model number

Brake resistance $\begin{aligned} & \text { DR } 3 \mathrm{~K} 1 \mathrm{~W}-\frac{10}{1} \\ & \text { module } \\ & \text { Rated power }(\mathrm{W}) \\ & \operatorname{Resistance}(\Omega) \pm 5 \%\end{aligned}$

Resistance cyclic curve

- Dimension of brake resistance box

Fig. A

Fig. D

Model No	Dimensions (mm) $\pm 3 \%$					Resistance range (Ω)	Model No	Dimensions (mm) $\pm 3 \%$					Resistance range (Ω)
	L1	L2	H	D	W			L1	L2	H	D	W	
SDR80W	140	125	20	5.2	40	$0.1 \sim 10 \mathrm{~K}$	SDR300W	215	200	30	5.2	60	0.5~30K
SDR100W	165	150	20	5.2	40	$0.1 \sim 10 \mathrm{~K}$	SDR400W	265	250	30	5.2	60	0.5~30K
SDR120W	190	175	20	5.2	40	$0.15 \sim 15 \mathrm{~K}$	SDR500W	335	320	30	5.2	60	0.5~30K
SDR150W	215	200	20	5.2	40	0.15~15K	SDR600W	335	320	30	5.2	60	$1 \sim 50 \mathrm{~K}$
SDR200W	165	150	30	5.2	60	$0.3 \sim 20 \mathrm{~K}$	SDR800W	400	385	40	5.2	80	$1 \sim 50 \mathrm{~K}$

\star NOTE:

(Resistance can be set up according to the requirements)

1. Please select the resistance (ohms), watts and the frequency of application (ED\%) specified by the Company.
2. A precaution toward the safety and inflammability around the peripheral environment shall be made when installing the brake resistance.
3. For an application with more than two sets of brake unit, please pay attention to the equivalent resistance after installing these brake units in parallel connection that shall not be lower than the equivalent minimum resistance of each brake units. When using the brake unit is desired, please peruse the operation instruction of brake unit and connect the wirings accordingly.

Braking resistor-watt and resistance values of the calculation

Brake torque	Resistance value	Input Power $200 \mathrm{~V} \sim 230 \mathrm{~V}$	Input Power $380 \mathrm{~V} \sim 460 \mathrm{~V}$
125%	R	$150 /$ Motor KW	$600 /$ Motor KW
130%	R	$143.75 /$ Motor KW	$575 /$ Motor KW
135%	R	$137.5 /$ Motor KW	$550 /$ Motor KW
140%	R	$131.25 /$ Motor KW	$525 /$ Motor KW
150%	R	$118.75 /$ Motor KW	$475 /$ Motor KW
160%	R	$106.25 /$ Motor KW	$425 /$ Motor KW
170%	R	$93.75 /$ Motor KW	$375 /$ Motor KW
180%	R	$81.25 /$ Motor KW	$325 /$ Motor KW

Example: $380 \mathrm{~V} / 100 \mathrm{HP} / 75 \mathrm{KW}$ (brake torque 125%, $10 \% \mathrm{ED}$)
Long Time Braking Activation
Resistance power (W) = (Motor) $75000 \mathrm{~W} \times 20 \%=15000(\mathrm{~W})$ Resistance value $(\mathrm{R})=600 / 75 \mathrm{KW}=8 \Omega$

\star Caution:

1: The smaller the resistance, the bigger the brake torque; and the higher current flowing through the brake unit
2 : Do not let the working current of brake unit exceed there of allowable maximum current, otherwise the device will be damaged.

- Method of calculation for resistance power ($\mathbf{1 0 \%} \mathbf{~ E D}$) :

© Brake-characterized resistance power

1. General load :

Resistance power (W) $=$ Motor $(\mathrm{W}) \times 10 \%$
2. Frequently brake cycle $\mathbf{T 0}$ (Less than 5 times per minute) :

Resistance power (W) $=$ Motor $(\mathrm{W}) \times 15 \%$

3. Long-time brake $\mathbf{T} 1$ (Less than $\mathbf{4}$ seconds per time) :

Resistance power (W) $=$ Motor (W) $\times 20 \%$

4. Long-time brake with bigger inertia $\mathbf{T 1}$ (Less than 10 seconds per time) :

Resistance power $(\mathrm{W})=$ Motor $(\mathrm{W}) \times($ More than $40 \%)$
\star Note :
$1:$ When connecting multiple units of brake resistance, it is recommended that brake resistances should be connected in series; when required a parallel connection, the brake resistance value, wire diameter, and wire length shall be consistent; so that the current can be evenly shunted to effectively protect the service life of every unit of brake resistance. After being serially or parallel connected for use, the resistance of each unit shall be consistent, and be cautious to the final sum of .
2 : After being serially or parallel connected for use, the resistance of each unit shall be consistent, and be cautious to the final sum of resistance.

IX APPENDIX

A. Standard specifications 9-1

- B. Ex-factory set values.............................10-1
- C. Parameter Setup Schedule....................11-1
- D. Err Display...12-1
- E. Drawing of Mechanism Appearance...13-1

Appendix A -Standard specifications-

200V series specifications

	Model No. LS800-2ㅁab	OK4	OK7	1K5	2K2	4K0	5K5	7K5	011	015	018	022	030	037	045	055	075	090	110
	Applicable motor power (KW)	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
	Applicable motor power (HP)	0.5	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125	150
	Rated output capacity (KVA)	1.4	1.9	2.8	4.7	6.6	9.5	12.9	19	25	31	38	49	62	72	87	114	133	173
	Continuous rated current (A)	3.7	5	7.5	12.5	17.5	25	34	50	68	82	100	130	165	190	230	300	350	455
	Max. output voltage (V)	3-phase corresponding input voltage																	
	Output frequency range (Hz)	$0.0 \sim 400.0 \mathrm{~Hz}$																	
	Carrier frequency (Hz)	16 KHZ					12KHZ			10KHZ			8KHZ			6KHZ		5KHZ	3KHZ
	Input voltage, frequency	3 -phase power supply $200 \mathrm{~V} \sim 240 \mathrm{~V} \quad 50 / 60 \mathrm{HZ}$																	
	Tolerance for voltage fluctuation of power supply	$\pm 10 \%(180 \mathrm{~V} \sim 264 \mathrm{~V})$																	
	Tolerance for frequency fluctuation of power supply	$\pm 8 \%$ ($47 \mathrm{HZ} \sim 64.8 \mathrm{HZ}$)																	
	Cooling fan	Forced fan																	

400 V series specifications

	$\begin{aligned} & \text { Model No. } \\ & \text { LS800-4 } \end{aligned}$	OK7	1K5	2K		4K0	5K5	7K5	011	015	018	022	030	037	045	055	075	090	110	132	160	185	220	300	375
	Applicable motor power (KW)	0.75	1.5	2.		4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	300	375
	Applicable motor power (HP)	1	2	3		5	7.5	10	15	20	25	30	40	50	60	75	100	125	150	175	200	250	300	400	500
	Rated output capacity (KVA)	2.8	3.8	5.		7.6	10.6	13.3	19	28	32	38	51	62	76	99	125	152	175	209	228	266	346	438	544
	Continuous rated current (A)	3.7	5	7.		10	14	17.5	25	38	43	50	68	82	100	130	165	200	230	275	300	350	455	550	683
	Max. output voltage (V)	3 -phase corresponding input voltage																							
	Output frequency range (Hz)	$0.0 \sim 400.0 \mathrm{~Hz}$																							
	$\begin{aligned} & \text { Carrier frequency } \\ & (\mathrm{Hz}) \end{aligned}$	16KHZ					12KHZ			10KHZ			8KHZ			6KHZ		5KHZ		4KHZ			HZ	2KHZ	
	Input voltage, frequency	3 -phase power supply $380 \mathrm{~V} \sim 480 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$																							
	Tolerance for voltage fluctuation of power supply	$\pm 10 \%(342 \mathrm{~V} \sim 506 \mathrm{~V})$																							
	Tolerance for frequency fluctuation of power supply	$\pm 8 \%(47 \mathrm{HZ} \sim 64.8 \mathrm{HZ})$																							
	Cooling fan	Forced fan																							

-Standard specifications- Appendix A

Common characteristics

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Control method	Sine wave SVPWM, 2-phase or 3-phase modulation, switching frequency $1 \mathrm{~K} \sim$ 16 KHZ adjustable, five control modes $-\mathrm{V} / \mathrm{F}, ~ \mathrm{~V} / \mathrm{F}+$ closed loop , V/F sensorless , Flux vector control + closed loop, Flux vector sensorless.
	Max. output frequency	$0.0 \sim 400.0 \mathrm{~Hz}$
	Frequency precision (temperature fluctuation)	Digital signal : $\pm 0.1 \%\left(-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}\right)$, Analog signal : $\pm 0.1 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$
	Precision for frequency setup	Digital signal : $0.1 \mathrm{~Hz}(0.0 \sim 400.00 \mathrm{~Hz})$, Analog signal : $0.1 / 60.0 \mathrm{~Hz}$
	Precision for speed regulation	Voltage sensor-less vector : $>10 \mathrm{~Hz}: \pm 1.0 \%, \mathrm{~V} / \mathrm{F}: \pm 3.0 \% \sim 5.0 \%$
	Acceleration / deceleration time	$0.0 \sim 30000$ (seconds), acceleration/deceleration can be governed by 4 types of adjustment respectively and portioned out into 16 stages of speed for application.
	Control functions	40 display functions, 8 rpm command sources, Torque Limit, zero-speed vector control, variable and constant torque control, selection of sink and source, upper \& lower frequency setup, AVR function, S-curve, multiplexing input, output terminal control, 16 preset stages for speed regulation, hopping frequency, AutoTuning, detection \& measurement of static and dynamic motor parameters, , slip compensation, Torque compensation, dual PID functions, DC brake at on/off, multistage operation functions, RS485/Modbus communication, automatic operation function, energy-saving operation.
	Signal for frequency setup	DC $0 \sim \pm 10 \mathrm{~V}, \mathrm{DC} 0 \sim+10 \mathrm{~V}, 4 \sim 20 \mathrm{~mA}$
	Brake torque	20\% approximately, 125% with brake controller mounted.
	Control functions	Digital operation panel, speed regulation, sensor-less flux control, PID control, multistage speed control, etc.
	Motor protection	Integral electronic thermal relay protections.
	Over-current protection	Will trip at over-current protection to enable a free run of motor when exceeding the 200% rated current
	Overload ability of ac drive	Motor rated output current exceeds the 150%, cumulative time 1 minutes free running stop.
	Over-voltage protection	Over-voltage level: Vdc $>400 \mathrm{~V}(200 \mathrm{~V} \sim 240 \mathrm{Vclass}) / \mathrm{Vdc}>800 \mathrm{~V}(380 \mathrm{~V} \sim 480 \mathrm{Vclass})$
	Low-voltage protection	Low-voltage level: Vdc < 180V(200V 240 Vclass) / Vdc $<380 \mathrm{~V}$ (380V $\sim 480 \mathrm{Vclass}$)
	Power supply protection	Under phase protection for input power supply (equipped for ac drive with a power above 5.5 KW), under phase protection for output (equipped for ac drive with a power above 0.4 KW)
	Superheating heat radiation fins	Thermal coupler protection $85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
	Stall protection	To protect the device from stall during acceleration/deceleration and operation.
	Grounding protection	To protect electronic circuits.
	Charging indication	Charging indicator will be turned "ON" when the DC voltage of main circuit is over 50 V .
	Place used	Indoor places free of corrosion or dusts.
	Ambient temperature	$-10^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$ (Lock wall-mounting model), $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$ (open model) free of freezing condition
	Storage temperature (Note 1)	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
	Humidity	Below 95\% RH (no condensation condition)
	Vibration	$20 \mathrm{~Hz} \leq 1 \mathrm{G}, 20 \sim 50 \mathrm{~Hz} 0.2 \mathrm{G}$

※ Note $1:$ A too high storage temperature may damage the capacitor of main circuit.

Appendiix \mathbb{B}-Ex-factory set values-

200V Series

	KW	20K4	20K7	21K5	22K2	24K0	25K5	27K5	2011	2015
	HP	0.5	1	2	3	5	7.5	10	15	20
F126		0.040	0.040	0.030	0.030	0.025	0.025	0.020	0.020	0.015
F128		5000	5000	5000	5000	5000	5000	5000	5000	5000
F129		220 V								
	F141	220 V								
	F142	2.0 A	3.5 A	6.0 A	8.2 A	15 A	20 A	27 A	38 A	50 A
	F143	60 Hz								
	F144	1680	1710	1710	1720	1720	1740	1740	1755	1755
	F145	0.5 HP	1.0 HP	2.0 HP	3.0 HP	5.0 HP	7.5 HP	10 HP	15 HP	20 HP
	F146	4P								

近	KW	2018	2022	2030	2037	2045	2055	2075	2090	2110
	HP	25	30	40	50	60	75	100	125	150
F126		0.015	0.010	0.010	0.008	0.008	0.006	0.006	0.003	0.003
F128		5000	5000	5000	5000	5000	3000	3000	3000	2000
F129		220 V								
	F141	220 V								
	F142	62 A	75 A	97 A	128 A	150 A	187 A	235 A	300 A	355 A
	F143	60 Hz								
	F144	1760	1760	1760	1775	1775	1780	1780	1780	1780
	F145	25 HP	30 HP	40 HP	50 HP	60 HP	75 HP	100 HP	125 HP	150 HP
	F146	4P	4 P	4P	4P	4 P	4P	4P	4P	4 P

400V Series

$\stackrel{7}{\square}$	KW	40K7	41K5	42K2	44K0	45K5	47K5	4011	4015	4018	4022	4030
$\xrightarrow{\circ}$	HP	1	2	3	5	7.5	10	15	20	25	30	40
F126		0.040	0.030	0.030	0.025	0.025	0.020	0.020	0.015	0.015	0.010	0.010
F128		5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000
F129		380 V										
	F141	380 V										
	F142	1.9 A	3.7 A	5.3 A	8.2 A	12 A	15 A	22 A	28 A	36 A	44 A	58 A
	F143	60 Hz										
	F144	1710	1710	1720	1720	1740	1740	1755	1755	1760	1760	1760
	F145	1.0 HP	2.0 HP	3.0 HP	5.0 HP	7.5 HP	10 HP	15 HP	20 HP	25 HP	30 HP	40 HP
	F146	4P										

$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	KW	4037	4045	4055	4075	4090	4110	4132	4160	4185	4220	000000
	HP	50	60	75	100	125	150	175	200	250	300	
F126		0.008	0.008	0.006	0.006	0.003	0.003	0.003	0.003	0.003	0.003	
F128		5000	5000	4000	4000	3000	3000	3000	3000	2000	2000	
F129		380 V										
	F141	380 V										
	F142	72 A	84 A	108 A	135 A	165 A	210 A	260 A	290 A	340 A	385 A	
	F143	60 Hz										
	F144	1775	1775	1780	1780	1780	1780	1780	1780	1780	1780	
	F145	50 HP	60 HP	75 HP	100 HP	125 HP	150 HP	175 HP	200 HP	250 HP	300 HP	
	F146	4P										

Appendix C -Parameter Setup Schedule-

$\mathrm{R}:(\mathrm{O})$ denotes that performing to set up the function is permitted during operation.

Parameter List LS800 (NO. 2.31 and NO. 2.32 Version)

-Parameter Setup Schedule-Appendix C
$\mathrm{R}:(\mathrm{O})$ denotes that performing to set up the function is permitted during operation.

2	R	Parameter	Description	Range	Unit	Ex-factory Setting	Page No.
	\times	F13	Rotating Direction Control	0~3		1	P5-7
$\frac{\pi}{0}$	0 : Either FWD or REV. 1: FWD only $2:$ REV only			3 : REV only with negative bias			
$\stackrel{\circ}{\circ}$	\times	F14	Lower Limit Frequency ($\%$ F14 5 F15)	$0.0 \sim 400.0$	Hz	0.0	P5-8
E.	\times	F15	Upper Limit Frequency ($※ \mathrm{~F} 14 \leqq \mathrm{~F} 15$)	$0.0 \sim 400.0$	Hz	60.0	
	\times	F16	Activation Frequency	$0.0 \sim 30.0$	Hz	0.0	
33$\vdots$$\vdots$00000000000000000000	\bigcirc	F17	Master speed	$0.0 \sim 400.0$	Hz	5.0	P5-9
	\bigcirc	F18	Stage 1 speed	$0.0 \sim 400.0$	Hz	5.0	
	\bigcirc	F19	Stage 2 speed	$0.0 \sim 400.0$	Hz	10.0	
	\bigcirc	F20	Stage 3 speed	$0.0 \sim 400.0$	Hz	15.0	
	\bigcirc	F21	Stage 4 speed	$0.0 \sim 400.0$	Hz	20.0	
	\bigcirc	F22	Stage 5 speed	$0.0 \sim 400.0$	Hz	30.0	
	\bigcirc	F23	Stage 6 speed	$0.0 \sim 400.0$	Hz	40.0	
	\bigcirc	F24	Stage 7 speed	$0.0 \sim 400.0$	Hz	50.0	
	\bigcirc	F25	Stage 8 speed	$0.0 \sim 400.0$	Hz	0.0	
	\bigcirc	F26	Stage 9 speed	$0.0 \sim 400.0$	Hz	0.0	
	\bigcirc	F27	Stage 10 speed	$0.0 \sim 400.0$	Hz	0.0	
	\bigcirc	F28	Stage 11 speed	$0.0 \sim 400.0$	Hz	0.0	
	\bigcirc	F29	Stage 12 speed	$0.0 \sim 400.0$	Hz	0.0	
	\bigcirc	F30	Stage 13 speed	$0.0 \sim 400.0$	Hz	0.0	
	\bigcirc	F31	Stage 14 speed	$0.0 \sim 400.0$	Hz	0.0	
	\bigcirc	F32	Stage 15 speed	$0.0 \sim 400.0$	Hz	0.0	
	\bigcirc	F33	Inching speed	$0.0 \sim 400.0$	Hz	5.0	
	(F F14 \leqq Set value \leqq F15)						
	\times	F34	Acceleration/deceleration time unit	$0 \sim 2$		1	P5-10
$\stackrel{\rightharpoonup}{\circ}$	$0: 0.01$ second (0.00~300.0) $1: 0.1$ second (0.0~3000.0)				$2: 1$ second (0~30000)		
	\bigcirc	F35	Acceleration time 0 (ref : Table 1,2), Master Speed, Stage 4, Stage 8, Stage 12	$0.0 \sim 30000$	Sec.	10.0	P5-10
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	F36	Deceleration time 0 (ref : Table 1,2), Master Speed, Stage 4, Stage 8, Stage 12	$0.0 \sim 30000$	Sec.	10.0	
	\bigcirc	F37	Acceleration time 1 (ref : Table 1,2), Stage 1, Stage 5, Stage 9, Stage 13	0.0~30000	Sec.	10.0	
$\begin{aligned} & \text { 帝. } \\ & \stackrel{y}{E} \end{aligned}$	\bigcirc	F38	Deceleration time 1 (ref: Table 1,2), Stage 1, Stage 5, Stage 9, Stage 13	$0.0 \sim 30000$	Sec.	10.0	
$\stackrel{\text { ® }}{ }$	\bigcirc	F39	Acceleration time 2 (ref : Table 1,2), Stage 2, Stage 6, Stage 10, Stage 14	0.0~30000	Sec.	10.0	

$R:(O)$ denotes that performing to set up the function is permitted during operation.

3	R	Parameter	Description	Range	Unit	Ex-factory Setting	Page No.
	\bigcirc	F40	Deceleration time 2 (ref : Table 1,2), Stage 2, Stage 6, Stage 10, Stage 14	$0.0 \sim 30000$	Sec.	10.0	
	\bigcirc	F41	Acceleration time 3 (ref : Table 1,2), Stage 3, Stage 7, Stage 11, Stage 15	$0.0 \sim 30000$	Sec.	10.0	
	\bigcirc	F42	Deceleration time 3 (ref: Table 1,2), Stage 3, Stage 7, Stage 11, Stage 15	$0.0 \sim 30000$	Sec.	10.0	0
	\bigcirc	F43	Inching acceleration time	0.0~30000	Sec.	5.0	
	\bigcirc	F44	Inching deceleration time	$0.0 \sim 30000$	Sec.	5.0	
	\times	F45	Multi-stage acceleration/ deceleration time allotment	$0 \sim 2$		0	P5-11
	0: All Internal Allotment; 1: Half Internal2 : All External Terminals						
	\times	F46	S-curve time when starting the acceleration	$0.00 \sim 3.00$	Sec.	0.00	
	\times	F47	S-curve time when finishing the acceleration	$0.00 \sim 3.00$	Sec.	0.00	
	\times	F48	S-curve time when starting the deceleration	$0.00 \sim 3.00$	Sec.	0.00	S-11
	\times	F49	S-curve time when finishing the deceleration	$0.00 \sim 3.00$	Sec.	0.00	
	\bigcirc	F50	AV : 0 V input bias \%	$-300.00 \sim 300.00$	\%	0.00	P5-12
	\bigcirc	F51	AV : 5 V input gain \%	$-300.00 \sim 300.00$	\%	100.00	
		F52	AV1 : -10V input bias \%	$-300.00 \sim 300.00$	\%	-100.00	P5-13
	\bigcirc	F53	AV1: 10V input gain \%	$-300.00 \sim 300.00$	\%	100.00	
	\bigcirc	F54	AV1 : Dead Band Voltage (Dead Band)	$0.00 \sim 85.00$	\%	0.00	
	O	F55	AV1: Zero-point output gain	$0.00 \sim 50.00$	\%	0.00	
		F56	AV1 : Maximal output limit	$10.00 \sim 100.00$	\%	100.00	
	\bigcirc	F57	AV2:0V input bias \%	$-300.00 \sim 300.00$	\%	0.00	P5-15
	\bigcirc	F58	AV2 : 10 V input gain \%	$-300.00 \sim 300.00$	\%	100.00	
	\bigcirc	F59	AV2 : Dead Band Voltage (Dead Band)	$0.00 \sim 85.00$	\%	0.00	
	\bigcirc	F60	AV2 : Zero-point output gain	$0.00 \sim 50.00$	\%	0.00	
	\bigcirc	F61	AV2 : Maximal output limit	$10.00 \sim 100.00$	\%	100.00	
	\bigcirc	F62	AI : 4 mA (or 0V) input bias \%	$-300.00 \sim 300.00$	\%	0.00	
	\bigcirc	F63	AI $: 20 \mathrm{~mA}$ (or 10 V) input gain \%	$-300.00 \sim 300.00$	\%	100.00	
	\bigcirc	F64	AI : Dead band voltage (Dead Band)	$0.00 \sim 85.00$	\%	0.00	
	\bigcirc	F65	AI : Signal Input mode	$0 \sim 1$	\%	0	
	0:4~20mA; $1: 0 \sim 10 \mathrm{~V}$;						
	\bigcirc	F66	AI : signal Interrupts detection (F5 = 4)	$0 \sim 3$	\%	0	
	$0:$ Not detected 1 : Slow down to zero Hz after stopping $2:$ Coast to stop $3:$ Maintain the frequency of operation before break						
	\times	F67	Digital Terminal Scan Cycle	$1 \sim 5000$	0.2 ms	10	P5-18

-Parameter Setup Schedule-Appendix C
$\mathrm{R}:(\mathrm{O})$ denotes that performing to set up the function is permitted during operation.

4	R	Parameter	Description		Range	Unit	$\begin{array}{\|l\|} \hline \text { Ex-factory } \\ \text { Setting } \end{array}$	$\begin{aligned} & \hline \text { Page } \\ & \text { No. } \end{aligned}$
	\times	F68	Di1,Di2 setup		$0 \sim 1$		0	P5-18
	0:Di1(FWD/STOP), Di2(REV/STOP) 1:Di1(RUN/STOP), Di2(FWD/REV)							
	\times	F69	Di3 setup	※Settings for multifunction input terminals should never be repeated except	$0 \sim 24$		2	P5-19
	\times	F70	Di4 setup		$0 \sim 24$		4	
	\times	F71	Di5 setup		$0 \sim 24$		5	
	\times	F72	Di6 setup		$0 \sim 24$		6	
	\times	F73	Di7 setup		$0 \sim 24$		9	
	\times	F74	Di8 setup		$0 \sim 24$		18	
	0 : Disabled 1:3-wire control 2 : External error input (NO) 3 : External error input (NC) 4 : RESET 5 : Multi-stage speed command 1 6 : Multi-stage speed command 2 7 : Multi-stage speed command 3 8 : Multi-stage speed command 4			9 : Inching Operation 10 : Acceleration/ Deceleration Time Command 1 11 : Acceleration/ Deceleration Time Command 2 12 : Master Speed Increase 13 : Master Speed Decrease 14 : Automatic Operation 15 : Auto Operation Suspended	16 : Counter Signal Input 17 : Counter Zero-in 18 : Coast to stop (Free-Run) 19 : Auto energy-saving Operation 20 : Second Unit PID 21 : Di enables PID 22 : Di enables AV2 23 : Di enables AI 24 : Zero servo			
	\times	F75	Relay 1 setup		$0 \sim 12$		1	P5-22
	\times	F76	DO1 setup		$0 \sim 12$		11	
	\times	F77	DO2 setup		$0 \sim 12$		6	
	\times	F78	DO3 setup		$0 \sim 12$		7	
	\times	F79	Relay 2 setup		$0 \sim 12$		3	
	$0:$ Disabled $3:$ In Operation $1:$ Output in Case of $4:$ Frequency Attained 1 Abnormality (NO) $5:$ Frequency Attained 2 2: Output in Case of $6:$ Consistent Frequency Abnormality (NC) $7:$ Overload Warning				8: Overload Timing Forecast 9 : Counter Cycle is Up 10 : Comparative Count value reached 11 : Zero-Speed Detected 12 : Timer function output			
	\times	F80	Frequency Consistent Width		$0.0 \sim 10.0$	Hz	1.0	P5-23
	\times	F81	Frequency Attained 1		$0.0 \sim 400.0$	Hz	60.0	
	\times	F82	Frequency Attained 2		$0.0 \sim 400.0$	Hz	60.0	
	\times	F83	Magnetic Stagnation Width Attained		$0.0 \sim 10.0$	Hz	1.0	
	\times	F84	Counting Cycle		0~30000	P	1000	
	\times	F85	Comparative Counting		0~30000	P	500	P5-24
	\times	F86	ON-Delay time counting		$0.00 \sim 60.00$	Sec.	0.00	
	\times	F87	OFF-Delay time counting		$0.00 \sim 60.00$	Sec.	0.00	
	\times	F88	Frequency skip 1		$0.0 \sim 400.0$	Hz	0.0	5-25
	\times	F89	Frequency skip 2		$0.0 \sim 400.0$	Hz	0.0	
	X	F90	Frequency skip 3		$0.0 \sim 400.0$	Hz	0.0	
	\times	F91	Frequency Skip Width		$0.0 \sim 10.0$	Hz	0.0	

R : (O) denotes that performing to set up the function is permitted during operation.

5	R	Parameter	Description		Range	Unit	Ex-factory Setting	Page No.
-	\bigcirc	F92	Stalling Protection setup		0~31		3	P5-25
	bit0: Protection function F93 bit1 : Protection function F94 bit2 : Protection function F96 bit3 : Inhibit inertia at motor start bit4 4 : Automatic Voltage Regulation (AVR)							
	\times	F93	Deceleration stalling voltage setup		$1.00 \sim 1.25$		1.20	P5-27
	X	F94	Acceleration Stalling Current Setup		0.50~2.50	Pu	1.50	
	X	F95	Start Thermal relays the current setting of position		$0.80 \sim 1.30$	Sec.	1.00	
	\times	F96	Current level of electronic thermal relay		$1.00 \sim 2.50$	Pu	1.50	
	\times	F97	Acting time of electronic thermal relay		$0.1 \sim 120.0$	Sec.	60.0	
	\times	F98	V/F output current limit		$0.20 \sim 1.45$		1.30	P5-28
	\times	F99	Leaking current, 3-phase current, and abnormal level setup		$0.001 \sim 0.500$	Pu	0.250	
	\times	F100	Over Temp. Protection Setup		60.00~95.00	${ }^{\circ} \mathrm{C}$	88.00	
	\times	F101	Fan Activating Temp. Setup		$40.00 \sim 60.00$	${ }^{\circ} \mathrm{C}$	45.00	
	X	F102	Brake discharging level		1.12~1.40	Pu	1.17	P5-29
	\times	F103	Automatic Operation Mode		$0 \sim 4$		0	
	0 : Disabled		1 : Shutdown after reciprocating operation $2:$ Shutdown d after reciprocal mode 4 : Master speed after cyclic mode					
	\times	F104	Number of Cycles		1~1000	Cycle	1	P5-30
	\times	F105	Time of automatic operation mode at master speed		-30000~30000	Sec.	5	
	\times	F106	Time of automatic operation mode at stage 1		-30000~30000	Sec.	0	
	\times	F107	Time of automatic operation mode at stage 2		-30000~30000	Sec.	0	
	\times	F108	Time of automatic operation mode at stage 3		-30000~30000	Sec.	0	
	\times	F109	Time of automatic operation mode at stage 4		-30000~30000	Sec.	0	
	\times	F110	Time of automatic operation mode at stage 5		-30000~30000	Sec.	0	
	\times	F111	Time of automatic operation mode at stage 6	※To execute revolution counter-clockwise and the operation time, set up the seconds in negative value. ※To execute revolution direction control, refer to F13.	-30000~30000	Sec.	0	
	\times	F112	Time of automatic operation mode at stage 7		-30000~30000	Sec.	0	
	\times	F113	Time of automatic operation mode at stage 8		-30000~30000	Sec.	0	
	\times	F114	Time of automatic operation mode at stage 9		-30000~30000	Sec.	0	
	\times	F115	Time of automatic operation mode at stage 10		-30000~30000	Sec.	0	
	\times	F116	Time of automatic operation mode at stage 11		-30000~30000	Sec.	0	
	\times	F117	Time of automatic operation mode at stage 12		-30000~30000	Sec.	0	
	\times	F118	Time of automatic operation mode at stage 13		-30000~30000	Sec.	0	
	\times	F119	Time of automatic operation mode at stage 14		-30000~30000	Sec.	0	
	\times	F120	Time of automatic operation mode at stage 15		-30000~30000	Sec.	0	
	\times	F121	Maximum Output Voltage (U,V,W)		$0.50 \sim 1.00$	Pu	1.00	P5-31
	\times	F122	Maximal Voltage Frequency		$0.50 \sim 2.00$	Pu	1.00	

-Parameter Setup Schedule-Appendix C
$\mathrm{R}:(\mathrm{O})$ denotes that performing to set up the function is permitted during operation.

6	R	Parameter		Description	Range	Unit	Ex-factory Setting	Page No.
	\times	F123	V/F C	Curve Select	-10~5		0	P5-31
	\times	F124	Energ	gy-saving Control Mode	$0 \sim 2$		0	P5-32
	0: Normal Mode 1: Efficiency control m				2 : External Terminal Control			
	\bigcirc	F125	Oscil	Ilation (Hunting) inhibit gain	$0.0 \sim 100.0$	\%	15.0	P5-32
	\bigcirc	F126	Volta (V/F	age boosting value torque compensation)	$0.000 \sim 0.100$	Pu	0.010	P5-33
	\times	F127	PWM	M Modulation Method	$1 \sim 2$		1	
	1:3-Phase SVPWM Modulation 2: 2-Phase SVPWM Modulation							
	\times	F128	PWM	M Switching Frequency	1000~16000	Hz	5000	P5-34
	\times	F129	RST	Input Voltage (rms)	$150 \sim 500$	V	220	
	(\% F129 set value must satisfy : F129 § $1.5 \times$ F141)							
	\times	F130	Vdc g	gain (Read only)	50~300	Fold	140	P5-34
	LS800 No. 2.31 Special-Purpose							
	\times	F131	FM1	Analog output mode	$0 \sim 1$		0	P5-34
	$0:$ PWM Modulation Output 1: Pulse Frequency Output							
	\bigcirc	F132	$\begin{array}{\|l\|l\|l\|} \hline \text { Multip } \\ (※ \mathrm{Ma} \\ 1.25 \mathrm{kF} \\ \hline \end{array}$	iple ratio of pulse frequency 1 ax. Pulse Frequency Output Hz)	$1 \sim 36$		1	P5-34
	\bigcirc	F133	FM1	Multifunctional output setup	$0 \sim 21$		1	
	 $0:$ No Output $5:$ Power supply output $1:$ Motor output speed frequency $2:$ PG feedback speed $6:$ Slip Frequency 3: Pulse frequency command $7:$ Output Voltage 4: Sensor-less vector output $8:$ Excitation voltage speed $9:$ Torque voltage 				$10:$ Output Current $16:$ Reactive power $11:$ Excitation Current Command $17:$ External PID $\%$ output $12:$ Torque current command $18:$ Keypad operate signal AV $13:$ Exitation crrrent $19:$ AV1 $14:$ Torque Current $20:$ AV 2 $15:$ True Power $21:$ AI			
	\bigcirc	F134	FM1	Analog output gain/10V	$0.50 \sim 8.00$	Pu	1.00	
	\times	F135	FM1	Analog polarity setup	$0 \sim 1$		0	5-35
	$\begin{aligned} \hline 0: \text { Without Polarity } & (※ \text { PWM1 Output Voltage Signal }<5 \mathrm{Vdc}, \text { motor engages in REV operation) } \\ 1: \text { With Polarity } \rightarrow & (※ \text { PWM1 Output Voltage Signal }=5 \mathrm{Vdc}, \text { motor stops }) \\ & (※ \text { PWM1 Output Voltage Signal }>5 \mathrm{Vdc}, \text { motor engages in FWD operation) } \end{aligned}$							
	\times	F136	FM2	Analog output mode	$0 \sim 1$		0	P5-35
	0: PWM Modulation Output 1: Pulse-wave Frequency Output							
	\bigcirc	F137	$\begin{aligned} & \text { Multi] } \\ & 2(※ \text { I } \\ & \text { outpu } \end{aligned}$	tiple ratio of pulse frequency Max. pulse-wave frequency ut 1.25 kHz)	$1 \sim 36$		1	P5-35
	\bigcirc	F138	FM2	Multifunctional output setup	$0 \sim 21$		10	
	※ Mode selection same as that for F133							
	\bigcirc	F139	FM2	Analog output gain/10V	$0.50 \sim 8.00$	Pu	1.00	P5-35
	\times	F140	FM2	Analog polarity setup	$0 \sim 1$		0	
	0: Without Polarity 1: With Polarity							

Appendix C-Parameter Setup Schedule-

$\mathrm{R}:(\mathrm{O})$ denotes that performing to set up the function is permitted during operation.

7	R	Parameter	Description	Range	Unit	Ex-factory Setting	Page No.
LS800 No. 2.32 Special-Purpose							
ındңno siopruv (OV) IWA	\times	F131	Longest outage duration allowable	$0 \sim 5000$	ms	20	P5-36
	\times	F132	Terminal-actuating setup for failure reset and after power restoration	$0 \sim 1$		0	
	$0:$ Direct Start $1:$ Return the Start Command Terminal (Di)						
	\times	F133	FM 1 Output Mode	$0 \sim 2$		0	P5-36
	$0: 0 \sim 10 \mathrm{~V} \quad 1: \pm 10 \mathrm{~V} \quad 2: 4 \sim 20 \mathrm{~mA}$						
	\bigcirc	F134	FM1 Multifunctional output setup	0~21		1	P5-36
	$0:$ No Output $5:$ Power supply output $1:$ Motor output speed frequency $2:$ PG feedback speed $6:$ Slip Frequency $3:$ Pulse frequency command $7:$ Output Voltage $4:$ Sensor-less vector output $8:$ Excitation voltage speed $9:$ Torque voltage			$10:$ Output Current $16:$ Reactive power $11:$ Excitation Current Command $17:$ External PID $\%$ output 12: Torque current command $18:$ Keypad operate signal AV 13: Excitation current $19:$ AV1 14: Torque Current $20:$ AV2 15: True Power $21:$ AI			
	\bigcirc	F135	$0 \mathrm{~V} / 4 \mathrm{~mA}$ Bias gain	$0.0 \sim 700.0$	\%	0.0	P5-36
	\bigcirc	F136	$10 \mathrm{~V} / 20 \mathrm{~mA}$ gain	$0.0 \sim 700.0$	\%	100.0	
	\times	F137	FM2 output Mode	$0 \sim 2$		0	P5-37
	$0: 0 \sim 10 \mathrm{~V} \quad 1: \pm 10 \mathrm{~V} \quad 2: 4 \sim 20 \mathrm{~mA}$						
	\bigcirc	F138	FM2 Multifunctional output setup	$0 \sim 21$		10	P5-37
	※ Mode selection same as that for F134						
	\bigcirc	F139	$0 \mathrm{~V} / 4 \mathrm{~mA}$ bias gain	$0.0 \sim 700.0$	\%	0.0	P5-37
	\bigcirc	F140	$10 \mathrm{~V} / 20 \mathrm{~mA}$ gain	$0.0 \sim 700.0$	\%	100.0	
	\times	F141	Rated voltage (rms)	$150 \sim 500$	V	N	
2	\times	F142	Rated current (rms)	$1.0 \sim 1000.0$	A	N	P5-37
$\stackrel{+}{9}$	\times	F143	Rated frequency(Hz)	$10.0 \sim 150.0$	Hz	N	
島	\times	F144	Rated speed	0~9000	rpm	N	
$\stackrel{0}{0}$	\times	F145	HP	$0.5 \sim 600.0$	HP	N	P5-38
	\times	F146	No. of poles	2~32	Pole	N	
	Note: $\mathrm{N}=$ Inverter and motor capacity according to the actual difference do different factory settings.						
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{3} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\times	F147	Control Mode Setup	$-1 \sim 6$		2	P5-38
	$-1:$ Static electric parameter detection $3:$ Closed Loop scalar Control (V/F + feedback) $0:$ Static with Dynamic Parameter Detection $4:$ Sensorless scalar control (V/F sensorless vector control) $1:$ Mechanical Parameter Detection $5:$ Closed loop vector control (flux vector + PG) $2:$ Open Loop scalar Control (V/F) $6:$ Sensorless vector control (sensorless flux vector control)						
	\times	F148	Speed Feedback	$0 \sim 1$		0	P5-40
	0: No Feedback 1: Encoder (PG)						

-Parameter Setup Schedule-Appendix C
$\mathrm{R}:(\mathrm{O})$ denotes that performing to set up the function is permitted during operation.

8	R	Parameter	Description	Range	Unit	Ex-factory Setting	Page No.
	\times	F149	Encoder (PG) pulse	300~2500	P/rev	1024	P5-40
	\times	F150	Encoder (PG) direction	$-1 \sim 1$		1	
	-1: B leads A		1 : A leads B				
	\bigcirc	F151	Encoder (PG) feedback speed/filtration time	$0.0 \sim 100.0$	ms	2.0	P5-40
	\times	F152	PG off-line detection time	$0.00 \sim 10.00$	Sec.	3.00	
	\times	F153	Pulse command	$300 \sim 2500$	P/rev	1024	
	\times	F154	Pulse command direction setup	$-1 \sim 1$		1	
	-1: B leads A		0 : Single Phase Feedback 1: A leads B				
	\times	F155	Pulse-command multiplying factor	0.010~10.000	x(fold)	1.000	P5-41
	\times	F156	Stator Resistance	$500 \sim 32767$		10000	P5-43
	\times	F157	Rotor Resistance	$500 \sim 32767$		8000	
	\times	F158	Stator Induction	3250~32767		9000	
	\times	F159	Mutual Induction	3250~32767		8750	
	\times	F160	No-load current (\%)	$12.50 \sim 99.00$	\%	40.00	
	\times	F161	Mechanical Constant (rotor inertia)	0~30000		1500	
	\times	F162	Magnetic Flux Estimator Bandwidth	$1.0 \sim 20.0$	Hz	3.0	P5-44
	\times	F163	Speed Estimator Bandwidth	$1.0 \sim 20.0$	Hz	7.0	
	\bigcirc	F164	Slip compensation Gain	$10 \sim 200$	\%	50	
	\bigcirc	F165	Scalar Speed Control P Gain	2~100	\%	20	P5-45
	\bigcirc	F166	Scalar Speed Control I Gain	$0.0 \sim 100.0$	\%	50.0	
	\bigcirc	F167	Low-speed Sensorless Speed Control P Gain	$2 \sim 100$	\%	30	
	\bigcirc	F168	Low-speed Sensorless Speed Control I Gain	$0.0 \sim 100.0$	\%	30.0	
	\bigcirc	F169	High-speed Sensorless Speed Control P Gain	$2 \sim 100$	\%	20	
	\bigcirc	F170	High-speed Sensorless Speed Control I Gain	$0.0 \sim 100.0$	\%	20.0	
	\times	F171	Low-speed torque compensation gain	100.0~180.0	\%	140.0	P5-47
	\times	F172	Torque compensation cut-off frequency	$0.00 \sim 0.60$	Pu	0.20	
	\bigcirc	F173	Torque current Limit	$0.000 \sim 1.250$		1.000	
	\times	F174	Torque Current Analog control source selection	$0 \sim 5$		0	
	$0:$ Disabled 2: AV1 $4:$ AI 1: Digital operation panel AV 3: AV2 $5:$ External PID						
	\times	F175	Torque control mode	$0 \sim 1$		0	P5-48
	$0:$ Torque current limit 1: Torque current command (over-speed tripping)						
	\times	F176	Torque control over-speed tripping frequency	$0.0 \sim 400.0$	Hz	60.0	P5-48

$R:(O)$ denotes that performing to set up the function is permitted during operation.

9	R	Parameter		Description	Range	Unit	Ex-factory Setting	Page No.
	X	F177	Close speed	vector control zeroioning	$0 \sim$		0	P5-48
	$0:$ Disabled 1: Zero-speed positioning 2: Pulse-wave frequency command position tracking							
		F178	Zero-speed positioning P gain		$2.00 \sim 100.00$	\%	30.00	5-48
		F179	Zero-speed positioning I gain		$0.00 \sim 100.00$	\%	20.00	
	X	F180	Latest Abnormality Record		\sim		0	5-49
	X	F181	Last Abnormality Record		6		0	
	X	F182	Last 2 Abnormality Records		$0 \sim 60$		0	
	X	F183	Last 3 Abnormality Records		0		0	
80000000000	Err 0 : Digital operation panel communication failure Err 1 : Over voltage(U1) or current(A1) in standby status Err 2 : Over voltage(U2) or current(A2) in acceleration Err 3 : Over voltage(U3) or current(A3) in deceleration Err 4 : Over voltage(U4) or current(A4) in speed regulation Err 5 : Heat sink overheated Err 6 : Dc Bus over voltage Err 7 : Low DC Voltage during operation (L.V) Err 8 : Electronic thermal relay action (Motor overload) Err 9 : AC Drive voltage not match the motor voltage Err 10 : Software-detected overload current protection Err 11 : AC Drive rated current range not match motor current Err 12 : Loss of output U-phase or U-phase C.T failure Err 13 : Loss of output V-phase or V-phase C.T failure Err 14 : Loss of output W-phase or W-phase C.T failure Err 15 : Reserved Err 16 : Encoder direction opposite to the phase sequence on the output side Err 17 : Encoder signal abnormality Err 18 : Parameter detection failure (Auto-tuning failure) Err 19 : Position-tracking error greater than 40 turns Err 20 : Overload ($150 \%, 60$ seconds), (VT series is $120 \%, 60 \mathrm{sec}$)				Err 21 : PG off-line detection Err 22 : Break wire detected analog signals AI Err 23 : Absence of speed feedback affecting performance of closed loop control Err 24 : Torque control over F176 upper limit of speed Err 25 : EEPROM parameter read back out of range Err 26 : Digital operation panel storage parameter write failure Err 27 : DSP storage parameter locked \& preventing modification Err 28 : Operation panel storage parameter locked \& preventing modification Err 29 : External input abnormality Err 30 : 3-phase current amplitude difference too big Err 31 : Current leakage or abnormal 3-phase current sum Err 32 : PUF fuse blown Err 33 : Power failure or too low mains input phase voltage Err 34 : Reserved Err 35 : Error in automatic operation time setup Err 36 : Digital input terminal setup repeated Err 37~60 : Reserved			
	\times	F184	No. of a	uto-reset	$0 \sim 10$		0	
	X	F185	Abnorm	ity Records Cleared	$0 \sim$		0	
	$0:$ Not Cleared. 1: Cleared.							
$1 \pi$$\times$00000000000	X	F186	Setup PID mode		$0 \sim 4$		0	P5-51
	$\begin{array}{ll} 0: \text { PID Disabled } & 2: \text { PID Stop Setting Reserved } 4: \text { DI enabled (PID Stop Setting Reserved) } \\ 1: \text { PID Stop Setting Zero-in } & 3: \text { DI enabled (PID Stop Setting Zero-in) } \end{array}$							
	\times	F187	PI Targe	Value Input Options	$0 \sim 8$		0	P5-51
	$0:$ PI initial value setup $3:$ AI input $6:$ RAMP output $1:$ AV1 input $4:$ Pulse Frequency command value $7:$ Total output current $2:$ AV2 input $5:$ Encoder (PG) feedback value $8:$ Torque current							

-Parameter Setup Schedule-Appendix C
$\mathrm{R}:(\mathrm{O})$ denotes that performing to set up the function is permitted during operation.

Appendix C -Parameter Setup Schedule-

R : (O) denotes that performing to set up the function is permitted during operation.

11	R	Parameter	Description	Range	Unit	Ex-factory Setting	Page No.
	\times	F208	Recall Parameter	$0 \sim 2$		0	P5-65
	\times	F209	Copy \& save the parameter in digital operation panel	$0 \sim 1$		0	P5-65
	$0:$ Not Saved 1: Saved in Digital operation panel						
	\times	F210	Lock up EEPROM Parameters	$0 \sim 1$		0	P5-65
	$0:$ Unlock parameters 1: Lock up Parameters						
	\times	F211	Reserved 1	-32767~32767		0	
	\times	F212	Reserved 2	-32767~32767		0	

Appendix D-Err Display-

Err Code	Description of Alarm Report
Err 0	Digital operation panel communication failure
$\operatorname{Err}(\mathrm{U}, \mathrm{A}) 1$	Over voltage (Err U1) or current (Err A1) in standby status
$\operatorname{Err}(\mathrm{U}, \mathrm{A}) 2$	Over voltage (Err U2) or current (Err A2) during acceleration
$\operatorname{Err}(\mathrm{U}, \mathrm{A}) 3$	Over voltage (Err U3) or current (Err A3) during deceleration
$\operatorname{Err}(\mathrm{U}, \mathrm{A}) 4$	Over voltage (Err U4) or current (Err A4) during speed regulation
Err 5	Heat sink overheated
Err 6	DC Bus over voltage
Err 7	Low DC voltage during operation (L.V)
Err 8	Electronic thermal relay enabled (Motor Overload)
Err 9	AC Drive voltage not match to the motor voltage
Err 10	Software detected overload current protection
Err 11	AC Drive rated current range not match motor current
Err 12	Loss of output U-phase or U-phase C.T failure
Err 13	Loss of output V-phase or V-phase C.T failure
Err 14	Loss of output W-phase or W-phase C.T failure
Err 16	Encoder direction opposite to the phase sequence on the output side
Err 17	Encoder signal abnormality
Err 18	Parameter detection failure
Err 19	Position-tracking error greater than 40 turns

Err Code	Description of Alarm Report
Err 20	Overload (150\%,60 Sec.)
Err 21	PG off-line detection
Err 22	Break wire detected analog signals AI
Err 23	Absence of speed feedback affecting performance of closed loop control
Err 24	Torque control over upper F176 limit of speed
Err 25	EEPROM parameter read back out of range
Err 26	Digital operation panel storage parameter write failure
Err 27	DSP storage parameter locked and preventing modification.
Err 28	Operation panel storage parameter locked and preventing modification
Err 29	External input abnormality
Err 30	3-phase current amplitude difference too big
Err 31	Current leakage or abnormal 3-phase current sum
Err 32	PUF fuse blown
Err 33	Power failure or too low mains input phase voltage
Err 35	Error in automatic operation time setup.
Err 36	Digital input terminal setup repeated.
Err 15, Err 34 , Err 37~Err 60 Are signals reserved for failure.	

Digital operator (KP-AD20)

(Figure A)

(Figure B)

(Figure C)

(Figure D)

Dimensions shown in the figures above are for reference only. Please refer to the latest catalogue for the updated dimensions. We reserve the right to change the dimensions without notice.

Appendix \mathbb{E}-Dimensional drawing of mechanism-

 Roughing-in dimensions and mounting dimensions
200 V class series

Applicable motor capacity	Roughingin dimensions (mm)			Constantdimensions(mm)				ψ	Holing, constant dimensions (mm)					Drawing No.
(HP) / (KW)	W	H	D	W1	W2	H1	D1	d	W3	W4	H2	H3	D2	
KP-AD 20	70.9	102	25.8	-	-	93	15.8	3.5	65.3	-	84.5	-	-	A
0.5 / 0.4	114	172	146	101	-	159	136	5.3	-	-	-	-	-	B
$1 / 0.75$														
2 / 1.5														
$3 / 2.2$	152	214	146	137.5	-	200	136	5.3	-	-	-	-	-	C
$5 / 3.7$														
7.5 / 5.5	188	300	180	170	-	283	170	7	-	-	-	-	-	D
$10 / 7.5$														
15 / 11														
20/15	250	458	227	218	-	401	217	7	242	170	445	460	112	E
$25 / 18$														
$30 / 22$														
$40 / 30$	345	563	272	305	152.5	515	262	7	330	212	546	568	140	
$50 / 37$														
60 / 45														
$75 / 55$														
100 / 75	604	770	322	262.4	220	749.5	312	7	582	-	745	770	158	F
125 / 90														
150/110														

-Dimensional drawing of mechanism- EAppendix

Roughing-in dimensions and mounting dimensions

400 V class series

Applicable motor capacity	Roughingin dimensions (mm)			Constant dimensions (mm)				ψ	Holing, constant dimensions (mm)					Drawing No.
(HP) / (KW)	W	H	D	W1	W2	H1	D1	d	W3	W4	H2	H3	D2	
KP-AD 20	70.9	102	25.8	-	-	93	15.8	3.5	65.3	-	84.5	-	-	A
0.5 / 0.4	114	172	146	101	-	159	136	5.3	-	-	-	-	-	B
$1 / 0.75$														
$2 / 1.5$														
$3 / 2.2$	152	214	146	137.5	-	200	136	5.3	-	-	-	-	-	C
$5 / 3.7$														
7.5 / 5.5	188	300	180	170	-	283	170	7	-	-	-	-	-	D
$10 / 7.5$														
15 / 11														
20/15	250	458	227	218	-	401	217	7	242	170	445	460	112	E
$25 / 18$														
$30 / 22$														
$40 / 30$														
$50 / 37$	345	563	272	305	152.5	515	262	7	330	212	546	568	140	
60 / 45														
75 / 55														
100 / 75														
125 / 90	604	770	322	262.4	220	749.5	312	7	582	-	745	770	158	F
150/110														
175/132														
200 / 160														
250 / 185														
$300 / 220$														
400 / 320														
$500 / 375$														

15

LONG SHENQ ELECTRONIC CO., LTD.

NO. 12-2, WULIN STREET, SHULIN DIST, NEW TAIPEI CITY,
TAIWAN, R.O.C (Shulin Industrial Park)
Tel : 02-2684-2888(4 lines)
Fax : 02-2684-2889 . 2684-2886

All the products are constantly modified thereof specifications to improve the perfection; for downloading the latest version of specifications, please visit Long Shenq website http : //www.acinverter.com.tw/.

* The company reserves the right to modify the models and specifications without notice. Copyright and all rights are reserved. No part of this publication may be reproduced in any form.

[^0]: \S The integral brake loop inside the ac drive failed to absorb the regenerative energy from motor during a sharp deceleration when the GD_{2} of motor driven load is too big

 * Once the rejuvenated energy is greater than $\mathbf{4 0 0 V}$ (Series 200~240V) or 800 V (Series $\mathbf{3 8 0} \mathbf{\sim 4 8 0 V}$), the over voltage protection immediately functions.
 \rightarrow Extend the deceleration time.
 \rightarrow Install a DC brake resistance (optional) of a grade not greater than 15HP exclusively for external use.
 \rightarrow If the DC brake resistance is of a grade of 20HP or larger, an external brake unit and resistance must be provided.(or Allowed option built-in brake unit.)

